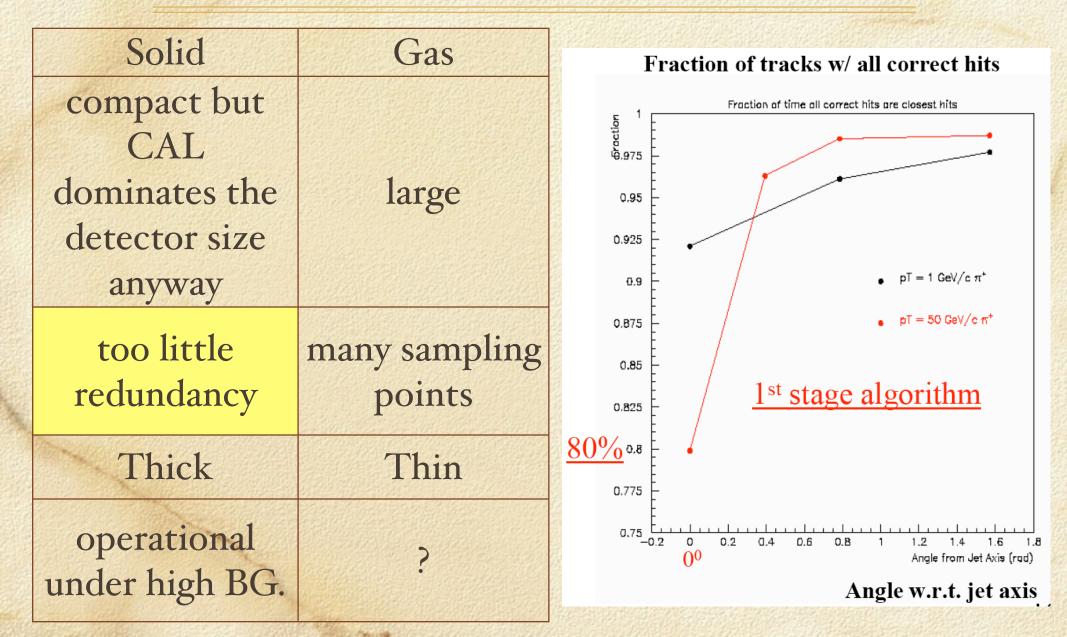
Design Philosophy

- To reconstruct final states in terms of fundamental particles: quarks, leptons, and gauge bosons, so as to visualize underlying Feynman diagrams as much as possible.
 - Reconstruction of heavy partons such as top, W, and Z via the jet invariant mass method (Particle Flow). This implies measurements of their spin vectors.
 - Separation of charm and bottom form lighter quarks and gluons (High Resolution Vertexing).
 - Indirect detection of invisible particles such as neutrinos as missing momenta (Hermeticity).
- To select participating Feynman diagrams with beam polarization.


Requirements for the LC Detector

- 1. Recoil mass resolution for $e^+e^- \rightarrow ZH(Z \rightarrow l^+l^-)$ is determined by beam energy spread.
- 2. Jet invariant mass resolution that allows separation of W and Z decaying into two jets.
- 3. Vertex resolution capable of identifying charm jets as well as cascade decays of bottom quarks.
- 4. Hermeticity down to less than a few tens of mrad.
- 5. Robustness against various beam-induced backgrounds.

Requirements for the Central Tracker

Momentum Resolution $\sigma_{p_T}/p_T \lesssim (1 \times 10^{-4}) \cdot p_T [\text{GeV}]$ Two-Hit Separation $\Delta_{2\text{hit}} \lesssim 2[\text{mm}]$ Track-Cluster Matching (extrapolation error to CAL) $\Delta r \phi, Z \lesssim 1 [\text{mm}]$ Time Stamping Resolution $\sigma_{T_0} \lesssim 1.4 [\text{ns}]$

Possible Options: Gas v.s. Solid

CDC v.s. TPC

Sec. 100

	CDC	TPC (MWPC)	TPC (MPGD)
Spatial	$\sigma_{xy} \lesssim 100 \mu { m m}$	$\sigma_{xy} \lesssim 200 \mu { m m}$	$\sigma_{xy} \lesssim 100 \mu \mathrm{m}?$
Resolution	$\sigma_z \lesssim 1 \mathrm{mm}(\mathrm{stereo})$	$\sigma_z \lesssim 0.5 \mathrm{mm}$	$\sigma_z \lesssim 0.5 \mathrm{mm}$
Two-Hit	$\Delta_{r\phi} \lesssim 2 \mathrm{mm}$	$\Delta_{r\phi} \gtrsim 10 \mathrm{mm}$	$\Delta_{r\phi} \lesssim 2 \mathrm{mm}?$
Separation	$\Delta_z = N.A.$	$\Delta_z \simeq 10 \mathrm{mm}$	$\Delta_z \simeq 10 \mathrm{mm}$
Angular	limited by wire	limited by	limited by
Coverage	length	diffusion/HV	diffusion/HV
Sampling Points	n < 100	$n\gtrsim 100$	$n\gtrsim 200$
Sector Boundary	none	thick	practically none?
Time Stamping	$\sigma_{T_0} \lesssim 2 \mathrm{ns}$	N.A. if TPC alone	N.A. if TPC alone