Beam Test of a MPGD-Readout TPC in a B-Field

--- In the course of LC Detector R&D ---

Keisuke Fujii, in place of the spokesperson Osamu Nitoh Introduction

LC Detector Concept

Reconstruct final states in terms of partons (q,l,gb)

2ndary & 3tiary vertex ID

Jet invariant mass --> W/Z/t ID --> p^{μ} --> angular analysis --> s^{μ}

Energy Flow

Missing momentum --> neutrinos

Hermeticity

Visualize events as viewing Feynman diagrams!

Select Feynman diagrams with beam polarization

In the symmetry limit $\sigma_{WW} \to 0$ for R-handed e- beam

Study events as looking at S-matrix elements! This requires a state-of-the-art detector! 2ndary & 3tiary vertex ID Thin and high resolution vertexing Energy Flow High resolution tracking (--> next slide)

High granularity calorimetry

Hermeticity

down to O(10mrad) or better

Requirements for Central Tracker

Momentum Resolution $\sigma_{p_T}/p_T \lesssim (1 \times 10^{-4}) \cdot p_T [\text{GeV}]$ Two-Hit Separation $\Delta_{2\rm hit} \lesssim 2[\rm mm]$ Track-Cluster Matching (extrapolation error to CAL) $\Delta r\phi, Z \lesssim 1 \text{[mm]}$ Time Stamping Resolution 0 $\sigma_{T_0} \lesssim 1.4 [\text{ns}]$

Jet v.s. TPC

	CDC	TPC (MWPC)	TPC (MPGD)
Spatial	$\sigma_{xy} \lesssim 100 \mu \mathrm{m}$	$\sigma_{xy} \lesssim 200 \mu { m m}$	$\sigma_{xy} \lesssim 100 \mu \mathrm{m}?$
Resolution	$\sigma_z \lesssim 1 \mathrm{mm}(\mathrm{stereo})$	$\sigma_z \lesssim 0.5 \mathrm{mm}$	$\sigma_z \lesssim 0.5 \mathrm{mm}$
Two-Hit	$\Delta_{r\phi} \lesssim 2\mathrm{mm}$	$\Delta_{r\phi} \gtrsim 10 \mathrm{mm}$	$\Delta_{r\phi} \lesssim 2 \mathrm{mm}?$
Separation	$\Delta_z = N.A.$	$\Delta_z \simeq 10 \mathrm{mm}$	$\Delta_z \simeq 10 \mathrm{mm}$
Angular	limited by wire	_ limited by _	limited by
Coverage	length	diffusion/HV	diffusion/HV
Sampling Points	n < 100	$n \gtrsim 100$	$n \gtrsim 200$
Sector Boundary	none	thick	thin?
Time Stamping	$\sigma_{T_0} \lesssim 2 \mathrm{ns}$	N.A. if TPC alone	N.A. if TPC alone
Space Charge	warm only	cold OK	cold OK

GEM as the Readout MPGD

Almost no ExB effects --> good spatial resolution
 Fast and spatially narrow induced signals

 --> good 2-track separation
 No wire --> thin sector boundaries
 Suppression of +ve ion feedback

Major R&D Items

Proof of Principle

mm

GEM Itself
 Operational stability
 Scalability (large area GEM foil)
 Application to TPC
 Spatial resolution
 2-track separation
 Positive ion feedback

So far no beam test of a MPGD-readout TPC made with a magnetic field!

Purpose of This Experiment

Purpose of This Experiment

- Compare basic chamber performances such as
 - Spatial resolution
 - 2-track separation
 - Positive ion feedback
- for MWPC and MPGD (GEM in particular) readout planes of the same test TPC
- varying
 - Beam particle, energy, position & angle, intensity
 B-field
- Compare these data with simulations and establish design procedure for the full scale MPGD-TPC

Collaboration

GLC CDC+X Group-MPI/DESY-IPN Orsay

- GLC CDC+X Group
 - Hiroshima: H.Kuroiwa, T.Takahashi
 - KEK: K.Fujii, K.Ikematsu, M.Kobayashi, T.Matsuda, et al
 - Kogakuin: T.Watanabe
 - Kinki: Y.Kato
 - MSU: A.Bacara, J.Gooc, R.Reserva
 - Saga: N.Sakamoto, A.Sugiyama, M.Yamaguchi
 - Tokyo: M.Inuzuka, S.Yamashita, et al
 - Tsukuba: A.Yamaguchi
 - TUAT: S.Arai, T.Kijima, A.Miyazaki, O.Nitoh, et al
- MPI/DESY Group
 - MPI: R.Settles, V.Eckerdt, et al
 - DESY: M. Hamman, T.Kuhl, P.Wienemann, et al
- IPN Orsay Group
 - J.Rothas, P.Rosier, V. Lepeltier, et al

Job Sharing GLC CDC+X Group-MPI/DESY-IPN Orsay GLC CDC+X Group (Hiroshima, KEK, Kogakuin, Kinki, Saga, Tokyo, Tsukuba, TUAT) Beam, Magnet, Mechanical Support, Trigger, Setup, Data Taking, Analysis MPI/DESY Group TPC itself, Readout Electronics, Setup, Data Taking, Analysis IPN Orsay MPGD plane (GEM)

Current Status of Preparation

MPI TPC

/ Field cage: maximum drift distance = 27 cm
Pad plane : 10cmx10cm (12 rows of 64 2mmx6mm pads
instrumented --> common for MWPC and MPGD)

MPI TPC Field Cage

TPC and its readout electronics will be shipped to KEK by the end of April and tested at KEK with LASER and cosmic rays!

Readout Plane (MWPC)

Wire-cathode gap = 1mm ---> sigma (PRF) = 1.4mm The readout MWPC is ready!

And operational!

Readout Plane (GEM)

Exploded view of the modified MPI TPC equipped with 2 GEM planes

- Some minor modifications seems already necessary: More holes for the SHV connectors.
- 2 support frames for GEM can be built.

Page 1 ROSIER Ph. 01-04-03

Magnet (JACEE)

Bore diameter: about 80cm Length: about 1m

> B up to 1.2 T Field Uniformity < 1.3% in R < 0.4% in Z in the TPC region

Now being checked out for cooling and excitation with great helps from the KEK cryogenic group !

Stray Field Estimate

- Carrier Carrier Ca

mingi-⇒-Grap

. 9

Ð,

hun

Stray field will be measured on test excitation

Arrangement for safety around the magnet will be made upon the setup of the experiment

Summer 1

P/1

B-field will be reduced in case any effect seen by E391a till the effect disappear

stray/field at e391a < B_earth if we rotate coil w/ correct dir.

Running Plan for the Machine Time

Overview of Data Taking Procedure

- MWPC-TPC Run
 - Tuning of setup, electronics, dag at B=OT
 - Beam energy, angle, position, p, intensity dependence at B=OT
 - Same at B=0.5 and 1T
- Replace MWPC by MPGD and refill LHe
- MPGD-TPC Run
 - Repeat the same measurements with MPGD

Machine Time Request = 40 Shifts

Setup and Tuning --> 6 shifts

- Need to spend enough time at the beamline to make sure that the magnet and the new readout system are working properly.
- MWPC-TPC Run --> 720 pts x 10min --> 15 shifts
 - 6 positions x 5 phis x 4 thetas --> 120 pts
 - 2 different beam intensities --> x 2
 - B = 0, 0.5, and 1T
 --> x 3 --> 720 pts
- MPGD-TPC Run --> 720 pts x 10min --> 15 shifts
- The other type of MPGD/Contingency --> 4 shifts