The Influence of Oxygen Contamination on the Performance of a Mini-Jet-Cell-Type Drift Chamber for the JLC-CDC

H.Kuroiwa^a, O.Nitoh^a, K.Fujii^b, N.Khalatyan^c, M.Kobayashi^b, Y.Asano^c, A.Bacala^f, K.Hoshina^a, Y.Kato^e, Y.Kurihara^b, H.Okuno^b, T.Watanabe^d

^aTokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
^b High Energy Accelerator Research Organization(KEK), Tsukuba 305-0801, Japan
^cInstitute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
^dKogakuin University, Tokyo 163-8677, Japan
^eKinki University, Osaka 577-8502, Japan
^fDepartment of Physics, Mindanao State University, Iligan City 9200, Philippines

Abstract

We have studied, using cosmic rays, the influence of oxygen contamination on the performance of a test drift chamber filled with a CO_2 : iso- C_4H_{10} (90:10) gas mixture. The test chamber has the same mini-jet-cell structure as our proposed central tracker for JLC (JLC-CDC). We observed significant deterioration of its spatial resolution with oxygen contamination in the long drift region, though the wire efficiency stayed essentially 100% up to 50 ppm over the full drift length of 5 cm. From the drift length dependence of signal charge measured at different oxygen concentrations, we calculated the electron attachment rates, which were found to be consistent with a proposed empirical expression.