New JLC Mask System at B=3T

Y. Sugimoto KEK @LCWS2000

Contents:

Pair background hits in JLC detector models
--- 2T, 3T(l*=2m), 3T(l*=4.3m)
Beam background from disrupt beam

--- Preliminary design of the beam extraction line

Background Source for Detector Components

Pair Background :	direct b.s. (QC1) b.s. (QC1)	e e γ, n	VTX VTX CDC,CAL,LUM
Disrupt Beam :	b.s. (extraction l	γ, n line)	VTX, CDC
Beam-strahlung γ :	b.s. (γ beam dun	γ, n np)	VTX
Main beam :	b.s. (e beam dur	n np)	VTX
Synchrotron Rad. :	b.s. (extraction l	γ l ine)	VTX, CDC

Simulation

Generation of pair background: CAIN Ebeam=250GeV ''A'' option (''Y'' option)

Detector Simulation:

JIM (based on GEANT3) Ecut for γ: 10 keV Ecut for n: 1 keV B field of compensation mag. & QC included

Parameters of JLC 500GeV (CM) Hi-Lum

		۷	×	≻
Luminosity	10^{34} /cm ² s	0.88	1.57	2.61
Nominal Lum. ³⁾	10^{34} /cm ² s	0.63	1.08	1.75
Bunch Population	10 ¹⁰	0.75	0.55	0.70
No. of bunches/pulse		92	190	190
Bunch separation	ns	2.8	1.4	1.4
Linac length/beam ⁷⁾	km	5.21	5.54	5.97
AC power(2 linacs)	MM	117	126	136
Beam power/beam	MM	4.28	6.28	7.99
Loaded gradient ⁴⁾	MV/m	57.6	54.2	50.2
Bunch length σ_z	шц	06	80	80
γE_{x} (DR exit)	10 ⁻⁶ m	3	S	က
γE_y (DR exit)	10 ⁻⁶ m	0.03	0.02	0.02
γE_{x} (IP)	10 ⁻⁶ m	4	4	4
γc_{y} (IP)	10 ⁻⁶ m	0.06	0.04	0.04
Cavity align. tol. ⁶⁾	шц	15	18	14
B× B	mm	10	9	9
3 *	mm	0.1	0.1	0.1
IP beam size σ_x^*	nm	286	222	222
٩ ٩	nm	3.15	2.86	2.86
Diagonal angle σ_x^*/σ_z	mrad	3.18	2.77	2.77
Disruption pa ram D _x		0.094	0.102	0.130
D		7.64	7.89	10.04
Pinch enh. H _D ⁵⁾		1.38	1.45	1.49
Yave		0.136	0.146	0.188
$\delta_{\scriptscriptstyle {\rm BS}}$	%	4.42	4.39	6.67
μγ		1.07	1.01	1.28

С т

Pair background track density

cm/cm³/BX

Pair background track density

lcos l<0.9

Detector models and Mask system

Detector Model		r Model	QC1 surrounded by	Mask System		
	Old	B=2T l*=2m	CDC	Long tungsten(W) mask inside support tube Low-Z (graphite/CH ₂) mask in front of QC1		
	Now	B=3T l*=2m	CAL	Long W Mask inside Support Tube (Short W mask is enough) Low-Z mask		
	Future	B=3T l*=4.3m	Endcap Iron	Forward calorimeters (No W mask) Low-Z mask		

Effect of Low-Z Mask

 Low-Z (graphite/polyethylene) mask at B~0 is very effective to absorb backscattered low energy e+/e-

• Low-Z mask works as a neutron shield

~1/10 attenuatin with 20cm CH₂ Boron-loaded CH₂ is available

Effect of the magnetic field on the track density

 $|\cos\theta| < 0.9$ Rin of the graphite mask = 2.0cm

3T Detector

3T *l**=**4.3m Detector**

Impact of the new optics (*l**=4.3m) on the detector

-Huge W-mask NOT needed

-Background hit much smaller (CDC, CAL)

-No need for Support tube (?)

-No need for Compensation magnet (?)

if the B field @4.3m is weak enough

-Smaller R_{min} of CDC and CAL possible

Beam background with "Y" option

~ x2 more background than ''A'' option

Energy deposit in QC "A" 17 TeV/BX "Y" 30 TeV/BX

Beam extraction line with energy measurement

by K. Kubo

Distribution at the 2nd focal point for monochromatic beams

E/E0 distribution

-> 1/100 attenuation is enough 0.1 n/ GeV is assumed (self shielding effect NOT included) Total = $4x10^{11}/\text{cm}^2/\text{y}$ at IP -> 1/100 attenuation is enough

Trajectories of the lost electrons

Summary

- VTX hit density in 3T detector is ~1/2 of that in 2T detector. Low-Z mask at B~0 is important to suppress backscatterd e+-.
- CDC hits by neutron in 3T detector are much reduced because of reduction of CDC length and change of ECAL position.
- With the new optics (l*=4.3 m), background hits in CDC and ECAL becomes still less. The huge W-mask, the support tube, and the compensation magnet may not be necessary.

Detector Model	CDC hits / BX (γ) (n)		CAL Edep (GeV / BX) (y) (n)	
2Т	2	30	~0	0.6
21	2	50		0.0
3T (l*=2 m)	1	2	~0	0.9
3T (l*=4.3 m)	1	0.1	0.01	0.03

- With higher (x3) luminosity option, background hits becomes ~x2
- Design of beam extraction line with energy measurement capability has been started. Neutron background produced by disrupt beam along the extraction line is 4x10¹¹/cm²/y at IP without any shielding.