GLD VTX Summary

Y. Sugimoto KEK 25 Aug. 2005 @Snowmass

Towards the baseline design

- Inner diameter
 - Study of pair background for various machine parameters
 - Beam pipe radius is determined from the consideration of the shape of the pair-background core
 - High Luminosity option requires larger beam pipe radius and R_{VTX} than Nominal option by 5 mm or more for all detector concepts
 - Andrei's new parameters for High Luminosity option are very preferable from the viewpoint of background. His approach should also be applied to 500 GeV case if possible
 - RVTX impact on physics (by Sonja Hillert)

Critical R&D

- Sensor R&D
 - CCD is an established technology, but there are several non-trivial issues
 - Very fine pixel
 - Radiation hardness of fully depleted CCD
 - Multi-port readout
 - Large area sensor
 - First of all, get any sample (\\\/\$\$\$)
- Readout electronics
 - FPCCD gives signal charge less than 1000 for inclined tracks

The followings are common to all VTX options/Concepts

- Wafer thinning and the support structure
- Endplate design
 - Material budget
 - Cabling
- Power consumption and cooling

Homework

- Optimization of layer configuration
 - Super-layers or equi-distance configuration
- More study on the background rejection by hitcluster shape (effect of δ -ray)
- Study of GLD features to compensate for the disadvantage (larger R) of GLD VTX in quark/anti-quark tag
 - Effect of PID (π/K , leptons)
 - Low momentum tracking