BCAL and Pair Background

Y. Sugimoto KEK 25 Aug. 2005 @Snowmass

FCAL/BCAL

• BCAL

- Locates just in front of final Q
- Coverage: down to ~5mrad
- W/Si or W/Diamond (No detailed design yet)
- FCAL
 - Z~2.3m
 - Also work as a mask protecting TPC from backscattered photon from BCAL
 - W/Si (No detailed design yet)

Pair B.G. hit on BCAL

- Generated by CAIN
- High L 20 mrad
- E_{beam}=250 GeV
- 1 BX
- 3T
- Beam exit hole: R=20mm

E-dep at z=+4.5m

Machine param. dependence

• Sum of both sides

500 GeV

1 TeV

Option	θx (mrad)	Edep (TeV/BX)	Option	θx (mrad)	Edep (TeV/BX)	
Nominal	2	20.8	Nominal	2	53.9	
	20	44.3		20	98.1	
High Lum	2	119	High Lum	2	303	
	20	184		20	416	
Low Q	2	6.1	Low Q	2	16.3	
	20	15.7		20	34.9	
			High Lum-I	2	141	
			High Lum-II	2	106	
nigh Lum-i / ii are Andrei's new param.						

0 mrad crossing

500 GeV Sum of both sides

Option	R of exit hole (mm)	Edep (TeV/BX)	
Nominal	0	145	
	10	43.5	
	15	29.3	
	20	20.8	
High Lum	0	754	
	10	242	
	15	163	
	20	118	

Backscattering

- Backscattering e+/e- comes out from beam exit hole (No low-Z mask)
- Hit at $R=L\theta_x/2+-R_{hole}$ w/o DID and $R=L\theta_x+-R_{hole}$ with DID (DID gives $B_x dl$ which cancels out transverse B field for incoming beam) For $\theta_x=20$ mrad,
 - − ~4.3+-2 cm w/o DID \rightarrow VTX
 - − ~8.6+-2 cm with DID \rightarrow IT

Summary

- Energy deposit in BCAL has large machine-parameter dependence
- It is not trivial BCAL can tag high energy electrons at small R, particularly in "High Luminosity" option
- Andrei's new high luminosity option is favorable for BCAL
- Reduction of beam exit hole radius seems possible with head-on collision from the viewpoint of pair background (determined by synchrotron radiation)
- In 20 mrad crossing angle case, backscattering from BCAL can hit VTX or IT

backup

0 mrad crossing

0 mrad HL 500GeV

Energy density (GeV/cm**2) High Lum Omrad