next up previous
Next: Examples of Applications Up: Track Fitting in r-z Previous: Pivot Transformation

Track Fitting with Multiple Scattering

Now let us turn our attention to the r-z track fitting under the influence of multiple scattering. The treatment here provides a way to calculate the E0 of the last subsection including multiple scattering effects in track fitting. From now on, we take (y0,z0) = (0,0) and $y \equiv \Delta y_0$.The multiple scattering modifies the track parameter of the particle as
\begin{displaymath}
\begin{array}
{lll}
 \frac{ d{\bf a} }{dy} = T \cdot {\bf a} 
 + \pmatrix{ 0 \cr \frac{d\Delta a}{dy} },\end{array}\end{displaymath} (90)
where
\begin{displaymath}
\begin{array}
{lll}
 \Delta a(y) \equiv a(y) - a(y_0)\end{array}\end{displaymath} (91)
represents the change of the dip angle due to the multiple scattering as a function of y. This results in
\begin{displaymath}
\begin{array}
{lll}
 \left\{ \begin{array}
{lllllll}
 \zeta(...
 ..._0 & + & \Delta a(y) & ~ & ~ 
 \end{array} \right. ,\end{array}\end{displaymath} (92)
where the parmeters with the suffix are those at the initial point before multiple scattering.

Now, let us assume that we are given (n+1) hit points, ${\bf z} \equiv (z_0,\cdots,z_n)^T$,measured at fixed y positions, $y_0=0, \cdots, y_n = L$.Then the minimization of the $\chi^2$:
\begin{displaymath}
\begin{array}
{lll}
 \chi^2 = \sum_{i=0}^n \left(
 \frac{z_i - z(y_i,{\bf a})}{\sigma_{z_i}} \right)^2.\end{array}\end{displaymath} (93)
The parameter vector that gives the $\chi^2$ minimum is
\begin{displaymath}
\begin{array}
{lll}
 {\bf a} & = & E_M \cdot \sum_{i=0}^n
 \frac{z_i}{\sigma_{z_i}^2} \pmatrix{1 \cr y_i} ,\end{array}\end{displaymath} (94)
with
\begin{displaymath}
\begin{array}
{lll}
 E_M^{-1} = \pmatrix{ 
 \sum \frac{1}{\s...
 ...i}^2} \cr
 ~ & \sum \frac{y_i^2}{\sigma_{z_i}^2} } .\end{array}\end{displaymath} (95)
Through the above equation, the change in ${\bf z}$ due to the multiple scattering induces a change in ${\bf a}$:
\begin{displaymath}
\begin{array}
{lll}
 \Delta {\bf a} 
 & = & E_M \cdot \pmatr...
 ...M \cdot A \cdot E^{-1}_{\bf z} \cdot \Delta {\bf z}.\end{array}\end{displaymath} (96)
From this we obtain the full error matrix including multiple scattering:
\begin{displaymath}
\begin{array}
{lll}
 \left< \Delta {\bf a} \cdot \Delta {\bf...
 ...\right\gt \cdot
 E^{-1}_{\bf z} \cdot A^T \cdot E_M.\end{array}\end{displaymath} (97)

Again the problem reduces to the evaluation of the correlation matrix in the coordinate measurements:
\begin{displaymath}
\begin{array}
{lll}
 \left< \Delta z_i \Delta z_j \right\gt 
 = \delta_{ij} \sigma_{z_i}^2 + B_{ij}\end{array}\end{displaymath} (98)
with
\begin{displaymath}
\begin{array}
{lll}
 B_{ij} & \equiv & N' \int [d\Delta a] ~...
 ...ght) \cr
 & = & \frac{K'}{2} y_i^2 ( y_j - y_i/3 ) ,\end{array}\end{displaymath} (99)
where the last expression is valid for $i \leq j$.The full error matrix is then written in the form:  
 \begin{displaymath}
\begin{array}
{lll}
 E = E_M + E_{MS},\end{array}\end{displaymath} (100)
where the first term is from the coordinate measurement errors while the second term from the multiple scattering:
\begin{displaymath}
\begin{array}
{lll}
 E_{MS} = E_M \cdot A \cdot E^{-1}_{\bf z} \cdot B \cdot
 E^{-1}_{\bf z} \cdot A^T \cdot E_M.\end{array}\end{displaymath} (101)

In the case of equal space sampling with the same position resolution, EM and EMS reduce to
\begin{displaymath}
\begin{array}
{lll} 
 E_M 
 & \simeq & \frac{2 \sigma_z^2}{n...
 ...}{21} & \frac{-11}{42 L} \cr
 ~ & \frac{13}{7 L^2} }\end{array}\end{displaymath} (102)
with
\begin{displaymath}
\begin{array}
{lll}
 K' = (1+a^2) \left( \frac{C}{P_T \beta} \right)^2 \frac{(1+a^2)^{1/2}}{X_0}\end{array}\end{displaymath} (103)
in the large n limit.


next up previous
Next: Examples of Applications Up: Track Fitting in r-z Previous: Pivot Transformation
Keisuke Fujii
12/4/1998