/* pnmhisteq.c Equalise histogram for a PGM or PPM file Options: -gray: modify gray pixels only; leave colours unchanged -rmap fn: read luminosity map from PGM file fn -wmap wn: write luminosity map to PGM file fn -verbose: print histogram and luminosity map Accepts PGM and PPM as input. PBM input is allowed, but histogram equalisation does not modify a PBM file. by John Walker (kelvin@fourmilab.ch) -- March MVM. WWW home page: http://www.fourmilab.ch/ Copyright (C) 1995 by John Walker Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, without any conditions or restrictions. This software is provided "as is" without express or implied warranty. */ #include #include "pnm.h" /* Prototypes */ static void hsv_rgb ARGS((double h, double s, double v, double *r, double *g, double *b)); static void rgb_hsv ARGS((double r, double g, double b, double *h, double *s, double *v)); /* HSV_RGB -- Convert HSV colour specification to RGB intensities. Hue is specified as a real value from 0 to 360, Saturation and Intensity as reals from 0 to 1. The RGB components are returned as reals from 0 to 1. */ static void hsv_rgb(h, s, v, r, g, b) double h, s, v; double *r, *g, *b; { int i; double f, p, q, t; if (s == 0) { *r = *g = *b = v; } else { if (h == 360.0) { h = 0; } h /= 60.0; i = h; f = h - i; p = v * (1.0 - s); q = v * (1.0 - (s * f)); t = v * (1.0 - (s * (1.0 - f))); switch (i) { case 0: *r = v; *g = t; *b = p; break; case 1: *r = q; *g = v; *b = p; break; case 2: *r = p; *g = v; *b = t; break; case 3: *r = p; *g = q; *b = v; break; case 4: *r = t; *g = p; *b = v; break; case 5: *r = v; *g = p; *b = q; break; } } } /* RGB_HSV -- Map R, G, B intensities in the range from 0 to 1 into Hue, Saturation, and Value: Hue from 0 to 360, Saturation from 0 to 1, and Value from 0 to 1. Special case: if Saturation is 0 (it's a grey scale tone), Hue is undefined and is returned as -1. This follows Foley & van Dam, section 17.4.4. */ static void rgb_hsv(r, g, b, h, s, v) double r, g, b; double *h, *s, *v; { double imax = MAX(r, MAX(g, b)), imin = MIN(r, MIN(g, b)), rc, gc, bc; *v = imax; if (imax != 0) { *s = (imax - imin) / imax; } else { *s = 0; } if (*s == 0) { *h = -1; } else { rc = (imax - r) / (imax - imin); gc = (imax - g) / (imax - imin); bc = (imax - b) / (imax - imin); if (r == imax) { *h = bc - gc; } else if (g == imax) { *h = 2.0 + rc - bc; } else { *h = 4.0 + gc - rc; } *h *= 60.0; if (*h < 0.0) { *h += 360.0; } } } int main(argc, argv) int argc; char *argv[]; { FILE *ifp; int argn = 1, i, j, verbose = 0, mono_only = 0; gray lmin, lmax; gray **lumamap; /* Luminosity map */ long *lumahist; /* Histogram of luminosity values */ int rows, hist_cols; /* Rows, columns of input image */ xelval maxval; /* Maxval of input image */ int format; /* Format indicator (PBM/PGM/PPM) */ xel** xels; /* Pixel array */ unsigned long pixels = 0, pixsum = 0, maxluma = 0; double lscale; xel *grayrow; pixel *pixrow; FILE *rmap = NULL, *wmap = NULL; const char * const usage = "[-gray] [-verbose] [-rmap pgmfile] [-wmap pgmfile] [pnmfile]"; pnm_init(&argc, argv); /* Check for flags. */ while (argn < argc && argv[argn][0] == '-' && argv[argn][1] != '\0') { if (pm_keymatch(argv[argn], "-gray", 1)) { mono_only = 1; } else if (pm_keymatch(argv[argn], "-verbose", 1)) { verbose = 1; } else if (pm_keymatch(argv[argn], "-rmap", 1)) { if (rmap != NULL) { pm_error("already specified an input map"); } argn++; if (argn == argc || strcmp(argv[argn], "-") == 0) { pm_usage(usage); } rmap = pm_openr(argv[argn]); } else if (pm_keymatch(argv[argn], "-wmap", 1)) { if (wmap != NULL) { pm_error("already specified an output map"); } argn++; if (argn == argc) { pm_usage(usage); } wmap = pm_openw(argv[argn]); } else { pm_usage(usage); } argn++; } if (--argc > argn) { pm_usage(usage); } else if (argc == argn) { ifp = pm_openr(argv[argn]); } else { ifp = stdin; } xels = pnm_readpnm(ifp, &hist_cols, &rows, &maxval, &format); pm_close(ifp); /* Allocate histogram and luminosity map arrays. If the user has specified an input map file, read it in at this point. */ lumahist = (long *) pm_allocrow(maxval + 1, sizeof(long)); memset((char *) lumahist, 0, (maxval + 1) * sizeof(long)); if (rmap == NULL) { lumamap = pgm_allocarray(maxval + 1, 1); } else { int rmcols, rmrows; gray rmmaxv; lumamap = pgm_readpgm(rmap, &rmcols, &rmrows, &rmmaxv); if (rmmaxv != maxval) { pm_error("maxval in map file (%d) different from input (%d)", rmmaxv, maxval); } if (rmrows != 1 || rmcols != rmmaxv) { pm_error("map size (%d by %d) wrong; must be (%d by 1)", rmcols, rmrows, maxval); } } /* Scan the image and build the luminosity histogram. If the input is a PPM, we calculate the luminosity of each pixel from its RGB components. */ lmin = maxval; lmax = 0; if (PNM_FORMAT_TYPE(format) == PGM_TYPE || PNM_FORMAT_TYPE(format) == PBM_TYPE) { /* Compute intensity histogram */ pixels = ((unsigned long) rows) * ((unsigned long) hist_cols); for (i = 0; i < rows; i++) { xel *grayrow = xels[i]; for (j = 0; j < hist_cols; j++) { gray l = PNM_GET1(grayrow[j]); lmin = MIN(lmin, l); lmax = MAX(lmax, l); lumahist[l]++; } } } else if (PNM_FORMAT_TYPE(format) == PPM_TYPE) { for (i = 0; i < rows; i++) { pixel *pixrow = (pixel *) xels[i]; for (j = 0; j < hist_cols; j++) { if (!mono_only || ((PPM_GETR(pixrow[j]) == PPM_GETG(pixrow[j])) && (PPM_GETR(pixrow[j]) == PPM_GETB(pixrow[j])))) { gray l = (gray) PPM_LUMIN(pixrow[j]); lmin = MIN(lmin, l); lmax = MAX(lmax, l); lumahist[l]++; pixels++; } } } } else { pm_error("unknown input format"); } /* The PGM and PPM branches rejoin here to calculate the luminosity mapping table which gives the histogram-equalised luminosity for each original luminosity. */ /* Calculate initial histogram equalisation curve. */ for (i = 0; i <= (int) maxval; i++) { /* Yick. With 16 bit grays, the following calculation can overflow a 32 bit long. So, we do it in floating point. Since this happens only maxval times, the inefficiency is trivial compared to the every-pixel code above and below. */ lumamap[0][i] = (gray) (((((double) pixsum * maxval)) / pixels) + 0.5); if (lumahist[i] > 0) { maxluma = i; } pixsum += lumahist[i]; } /* Normalise so that the brightest pixels are set to maxval. */ lscale = ((double) maxval) / ((lumahist[maxluma] > 0) ? ((double) lumamap[0][maxluma]) : ((double) maxval)); for (i = 0; i <= (int) maxval; i++) { lumamap[0][i] = (gray) MIN(((long) maxval), ((long) (lumamap[0][i] * lscale + 0.5))); } /* If requested, print the luminosity map and original histogram. */ if (verbose) { fprintf(stderr, " Luminosity map Number of\n Original New Pixels\n"); for (i = 0; i <= (int) maxval; i++) { if (lumahist[i] > 0) { fprintf(stderr,"%6d -> %6d %8ld\n", i, lumamap[0][i], lumahist[i]); } } } switch (PNM_FORMAT_TYPE(format)) { case PBM_TYPE: case PPM_TYPE: for (i = 0; i < rows; i++) { pixrow = (pixel *) xels[i]; for (j = 0; j < hist_cols; j++) { if (!mono_only || ((PPM_GETR(pixrow[j]) == PPM_GETG(pixrow[j])) && (PPM_GETR(pixrow[j]) == PPM_GETB(pixrow[j])))) { double r, g, b, h, s, v; int iv; r = (double) PPM_GETR(pixrow[j]) / ((double) maxval); g = (double) PPM_GETG(pixrow[j]) / ((double) maxval); b = (double) PPM_GETB(pixrow[j]) / ((double) maxval); rgb_hsv(r, g, b, &h, &s, &v); iv = (int) ((v * maxval) + 0.5); if (iv > ((int) maxval)) { iv = maxval; } v = ((double) lumamap[0][iv]) / ((double) maxval); if (v > 1.0) { v = 1.0; } hsv_rgb(h, s, v, &r, &g, &b); PPM_ASSIGN(pixrow[j], (int) (r * maxval), (int) (g * maxval), (int) (b * maxval)); } } } break; case PGM_TYPE: for (i = 0; i < rows; i++) { grayrow = xels[i]; for (j = 0; j < hist_cols; j++) { PNM_ASSIGN1(grayrow[j], lumamap[0][PNM_GET1(grayrow[j])]); } } break; } pnm_writepnm(stdout, xels, hist_cols, rows, maxval, format, 0); /* If requested, save the map as a PGM file. */ if (wmap != NULL) { pgm_writepgm(wmap, lumamap, maxval, 1, maxval, 0); fclose(wmap); } return 0; }