"JLC加速器R & D報告会』 Beam Delivery System

2000年4月26日 JLC-FFIR グループ,田内利明 http://acfahep.kek.jp/member/subg/ir.html for the members

- 0. FFIR issues to be studied (JLC-DS,1997).
- 1. Collimation System
- 2. Final Focus System
- 3. Interaction Region QC1, Background, Instruments etc.
- 4. Dump Line
- 5. Future Plan

next up

Next: Parameter Up: FFIR ISSUES TO BE Previous: FFIR ISSUES TO BE

Contents

- <u>Contents</u>
- Parameter
- Beam Delivery (switch/matching) System
 - <u>Two IPs for</u> $\gamma\gamma$, γe^- <u>collisions</u>
 - <u>Two IPs for a concurrent e</u> <u>+</u> <u>e</u> <u>-</u> <u>collision</u>
- <u>Collimation</u>
 - o collimation depth
 - <u>material</u>
 - wakefield
 - o <u>muon background</u>
- Final Focus
 - <u>Common optics for 0.3 1.5 TeV</u>
 - Tuning/Feedback method
- <u>IR</u>
 - <u>Horizontal Crossing Angle: Crab cavity?</u>
 - Final focus Quadrupole Magnet
 - □ <u>configuration</u>
 - □ <u>support system</u>
 - <u>Superconducting compensation magnet</u>
 - Detector Solenoid
 - <u>Revised optics for larger clearance of SR</u>
 - Diagnostics?
 - <u>Vacuum chamber</u>
- Detector and Background
 - Energy Range, 0.25 1 1.5 TeV?
 - Background
 - □ synchrotron radiation
 - □ <u>muon</u>
 - □ <u>e</u> <u>+</u> <u>e</u> <u>-</u> <u>pairs</u>
 - □ <u>neutrons</u>
 - □ <u>minijets</u>
 - Active mask and veto calorimeter inside the mask
 - <u>Compact Detector as proposed for NLC</u>
- Luminosity Measurement
 - as a function of center-of-mass energy
 - <u>beam size measurement by</u> e^{\pm} pairs
- Beam Extraction and Dump
 - <u>recycle?</u>
 - measurement of beam polarization
 - measurement of beam energy
- Instrumentation
 - o <u>magnet</u>
 - o <u>BPM</u>
 - o <u>BSM</u>
 - o <u>mover</u>
 - o <u>control</u>
 - machine protection
- <u>References</u>

JLC: Beam Delivery System

Probability of tail; gas scattering

$$\sigma_{el}(\theta > \theta_{o}) = 4 \frac{\pi Z^{2} r_{e}^{2}}{\gamma^{2}} \frac{1}{\theta_{o}^{2}}$$
$$\theta_{o} = n \sqrt{\frac{\varepsilon}{\beta}}$$

tail (= beam halo) outside of $6\sigma_x X 40\sigma_y$

 $P_{tail} = N_{gas} \frac{4\pi Z^2 r_e^2}{\gamma^2 n^2} \frac{1}{\epsilon} \int \beta ds$ $N_{gas} = 3.6 \times 10^{22} P(torr), Z(CO) = 14, r_e = 2.8 \times 10^{-15} m$ $\gamma \varepsilon_v = 3 \times 10^{-8} \text{ mrad}, \ \gamma = 0.25 \times 10^6 \ (\text{E}_{\text{beam}} = 250 \text{GeV})$ $P_{tail}^{y} = 0.01 \times P_{tail}^{x} = 0.08P \frac{1}{n_{y(x)}^{2}} \int \beta_{y(x)} ds$ Assuming $P = 10^{-8}$ torr and $n_x = 6, n_y = 40$, (1) Pre-linac Collimation s = 11500m, $\beta_x = \beta_v = 100m$ $P_{tail}^{y} = 5 \times 10^{-7}, P_{tail}^{x} = 2 \times 10^{-7}$ (2) Post-linac Collimation $\int \beta_{v(x)} ds = 2.6 \times 10^7 (1.6 \times 10^6) m, s_{FF} = 588.4 m$ $P_{tail}^{y} = 1.3 \times 10^{-5}, P_{tail}^{x} = 3.6 \times 10^{-7}$

Location of bending magets and collimators

element	s from IP (m) function
bend1	90	-3.28 mrad
bend2	1600	7 mrad
COLLI1.8	1840.3	x', y' second colli.
COLLI1.7	1966.7	x', y' first colli.
COLLI1.6	2093.1	x, y second colli.
COLLI1.5	2219.5	x, y' first colli.
COLLI1.4	2357.4	momentum second colli.
COLLI1.3	2483.9	momentum first colli.
COLLI1.2	2725.4	(in the linac)
COLLI1	2855.6	(in the linac)

Collaboration
 Components
 Concepts
 Detectors
 Test Facilities
 NLC Technical
 NLC Home
 Virtual Tours
 Other HEP Labs

US DOE HEP

Construction of the Final Focus Test Beam (FFTB) facility was finished in 1993 and includes magnets and other beam elements constructed in Russia, Japan, France, and Germany, as well as the United States.

The purpose of this test facility is to investigate the factors that limit the size and stability of the beam at the collision point of a linear collider. Since the rate of collisions depends on beam density, the ability to focus the beam to a tiny size at the collision point (also called the interaction point or IR) is one of the critical parameters that will determine the research capability of a facility, such as the NLC.

The FFTB facility is a straight-ahead extension of the http://www-project.slac.stanford.edu/nlc/

testfac/FFTB.html

Final Focus Test Beam

6700A2

Fig. 2

🕅 1: JP27 optics for T-JLC by K. Okle

42 2.5\$ SF −0.88 SD

-

Ki@sbo~330

H.Yamaoka, 2nd ACFA-LC, Seoul, Nov., 1999 Support Tube (80cmo x 12m) Analysis by ANSYS

Backgrounds

(1) Muons

 10^{7} muons/trains at the collimators Assuming 0.1% flat beam-tail, 10^{-3} (tail) x 10^{10} (beam)x10²(bunch)=10⁹electrons/train would hit the collimators.

Tolerance: One muon in 16x16x16m³ at IP

(2) Synchrotron radiations in FF-system. collimation is important: $6 \sigma_x \times 40 \sigma_y$

(3) e^+e^-pairs created in collisions number of pairs 25,000 / bunch average energy 4 GeV ($E_e > 3MeV$) total energy 100 TeV / bunch signals for pair monitor for $E_e = 300 \sim 500 MeV$

(4) neutrons (1 neutron/100MeV) pairs at QC1 and masks ~30 TeV / bunch 3x10⁵ neutrons / bunch beamstrahlung photons 340 kW (4%x2) 2x10¹⁶ neutrons / sec disrupted beam in dump line

Muon Attenuator

JLC Design Study, April, 1997 QC1 and Synchrotron Radiation

note: 9cmφ aperture for super conducting QC1, Jan.2000 note: 4cmφ beam pipe just in front of QC1

80 cm ϕ support tube

1/100 bunch and E_{\gamma}>100MeV, E_e>10MeV for display purpose

JIM simulation for E_{γ} >10keV, E_{e} >200keV

Background tolerance (1) CDC 10 % occupancy / train

r _{min} B	2 tesla	3 tesla
2.5 cm hit#/train	 1.2 k (2.4 k)	0.12 k (0.37 k)
1.8 cm		O _{0.72 k}
1.5 cm hit#/train	4.2 k	2.6 k

(2) VTX 1hit / mm² / train

r _{min} B	2 tesla	3 tesla
2.5 cm hit#/mm²/train	○	0.4 (1.0)
1.8 cm		▲ 1.6
1.5 cm hit#/mm²/train	4.3	× _{3.6}

Values in () are those of JLC-Y (high luminosity).

4,3 and $2cm\phi$ beam pipes for $r_{min}=2.5,1.8$ and 1.5 cm, respectively.

A.Miyamoto, LC99, Oct., 1999 Summary of Neutron Background in VTX

Neutron yield at IP(/cm²/year)

e⁺e⁻: Old (GEANT) $3x10^7$ New(Fluka98) w 2T solenoid $5 x10^7$

New(Fluka98) w. CC and QC 7×10^7

beamstrahlung:	Old(GEANT)	1×10^{7}
from beam dump(340kW) (300m from IP)	New(Fluka98)	2.5×10^{7}

Statistical error of new estimate is roughly a few x 10['] (guess)

New estimatebased on Fluka98 is well below the requirement, $< 1.5 \times 10^{10} \text{ n/cm}^2$ for the CCD vertex detector

Neutron background from other sources in dump line are under study.

Pixel Beam Profile Monitor

H. Yamamoto et al., University of Hawaii

The sensor arrangement; the top side faces the IP.

readout chip pixel sensor

One 'segment' ; the bottom side faces the IP.

Schematic diagram of the 3D pixel concept

3D Pixel 1. Fast charge collection

< 1 nsec :bunch separation

2. Radiation hard >>50kRad/year,10⁷n/cm²/year

- 3. Flexible geometry
- 4. Active edge

IR issues	JLC	NLC	tools	R&D other choices
Collimation muon background	non-linear 1.2km/1.5TeV 6σ _x x 40σ _y 6 cylinders (iron or lead) 0.6φ x 120m	linear 2.4km/1TeV(1.5TeV?) $7\sigma_x x 35\sigma_y$ 4 spoilers tunnel filler 3 x 3 x 9m ³	SAD, EGS MUCARLO	wake field measurement detail tunnel geometry shorter collimation radio-activation in tunnel optimization with two schemes exotic : laser, liquid metal collimation
Final Focus System	1.6 (0.6) km/1.5 (0.5) TeV	2.5 km -> 1 km by Pantaleo's FF optics	SAD, MAD	Tunability, 2 IP, μ bkg.
Crossing angle Crab cavity	8mrad toward smaller angle limited by SR backgrounds option (lum. 40% up) why? higher luminosity without crab cavity.	20mrad toward larger angle,limited by "3 Tesla". must why? easier extraction of disrupted beam.	ABEL,CAIN, Guinea-Pig	 tolerance for crab cavity requires 0.2°phase stability needs prototype-cavity (measurement at SLAC, M.Ross) KEK B-factory crab cavity can be prototype?
Final focus Q-magnet	warm magnet, 2.2m long inner radius=6.85mm another option: superconducting QC1 w/o compensation magnet.	2 permanet magnets, 1m long each, + Q1SC(0.5m) inner radii=7 and 8 mm outer radii=2 and 2.5cm PEP-II experience 2m from IP, why?		warm magnet: water cooling w/o vibration permanet magnet: no beam-based alignment smaller angle: superconducting magnet how to extract beam?
	longer distance makes smalle background (back-scattered p it must be benifit if it is set ou if $l^*=1m$, 25% shorter final f if $l^*=3m$, 20% longer final for	hotons) and utside the conpact detector. ocuss system		optics with large l^*

IR issues	JLC	NLC	tools	R&D other choices
Superconducting compensation magnet	must	no for small detector, must for large detector. (permanet magnet has no advantage with this?)		thinner cryostat for smaller dead cone
Detector solenoid	2 -> 3 Tesla	6 -3Tesla for small/large D. 20mrad crossing angle OK?	GEANT	Optimization of mag. field, calorimeter performance
Support of FF-Q vibration	support tube no additional "anchor" is necessary at TRISTAN tunnel. prototype in 2000.	optical anchor compact detector with support tube (grounded)	ANSYS	their prototypes calculations with measured ground motion.
Slow feedback(SLC type)	collisions: can be corrected at <10Hz with BPM by using beam- beam deflection. O(nm) ground motion at >10Hz 5% lum. loss nm beam spot size: needs orbit correction by 10nm-res. BPMs	Slow feedback(<10Hz) fast feedback(2.8ns, <200Hz) by BPM with pilot beam and also by beam beam deflection.	SAD,TURTLE, MERLIN,CAIN	SLC and B-factory's experiences feedback simulations 10-100nm resolution BPM.
Background: synchrotron radiation (SR)	no problem because of collimation and mask (for that from last bend).	similar to JLC but needs recalculation	MQRAD QSRAD GEANT	SLD experineces, that is large fluctuation of the background in CDC. What is a stability of beam?

IR issues	JLC	NLC	tools	R&D other choices
Pair background	VTX: 0.9-0.4hits/mm ² /train by "electrons" at r=2.5cm for B=2-3 Tesla	VTX: 2-7 hits/mm ² /train at r=1.2cm for B=6-3 Tesla	ABEL,CAIN, Guinea-Pig GEANT,EGS	Detailed geometry at IP Tolerable background hits: VTX: < 1hit/mm ² /train CDC: occupancy < 1%
	CDC: 121-12 hits /train by "photons"	CDC: 3x10 ⁴ photons/train no gas chamber allowed		radiation damage?
	at Ecm=500GeV	at Ecm=1TeV		need cross check with common background-rays and geometries.
		This result may be consistent with JLC		Comparison between ABEL,
		because of "photon conversion" in the chamber and its higher beam energy.		CAIN and Guinea-Pig.

neutron backgrounds from pairs, (disrupted beam and beam dump) 10^{6} n/train (n/Ee=0.13/GeV) VTX: 7 x10⁷hits/cm²/year

VTX: 2.2-4.7 x10⁹hits/cm²/year FLUKA98 Tole

GEANT

Tolerable background hits: CCD/VTX $< 1.5x \ 10^{10} \text{ hits/cm}^2$ so, no problem.

Instruments

IR issues	JLC	NLC	tools	R&D other choices
Pair monitor	3D pixel detector Hawaii university	??? Very big SR background! How does SR background fluctuate event by event inside masks at SLD ?	ABEL,CAIN, Guinea-Pig GEANT	pixel device(50x50µm ²) with dE/dX measurement. What's kind of feedback?
Shintake monitor				Laser optics close to IP? σ_x measurement at least
IP-BPM				O(10nm) resolution
Luminosity meas.	acollinearity angle of Bhabha scattering		Toomi's program	How to measure luminosity distribution within a beam energy spread(1%) ? (toponium physics)
Beamstrahlung monitor				(
Radiative Bhabha meas		There is a chicane in extraction beam line to	ABEL,CAIN, Guinea-Pig	Design extraction lines and beam diagnostic equipments
Energy measurement	using vertical dispersion	separate electron beam and photons with a common	SAD GEANT	for small(JLC) and large (NLC) crossing angles.
Polarization measurement	Hirose's talk at LCWS95 (Appi, Morioka)	dump.		

Beam dump

Future Plan

1. IP layout will be optimized for the high luminosity upgrade.

JLC-Y : 1.4nsec bunch spacing, 190 bunches/train stronger beamstrahlung effects

2. "Pre-linac" collimation scheme must be established.

It means collimation before the main linac.

It may simplify the collimation system and the muon protection.

3. Superconducting QC1 is seriously considered.

The design shall be based on experiences of LHC-QC magnets, adding new features of correction magnets near the beam line for nano-meter beams. Prototype of QC1 must be necessary.

4. More detailed study on the support system will be pursued with respect to ground motions.

Prototype system must be constructed to verify our estimations.

5. Background studies will continue based on detailed simulations with up-to-date geometries, especially for the neutron background.

6. The realistic design of the pair monitor shall be promoted by a collaboration between University of Hawaii and KEK. It will be finalized in this autumn.

7. R&D of active mask and luminosity monitor will be initiated by National Taiwan University group.

8. The "actual" dump line must be designed in order to control beam losses for the neutron backgrounds.

Experimental methods must be established for measurements of beam energy spread and polarization.

9. All efforts should be concentrated for the first draft of the CDR in this autumn.