

Least Squares Method

N measurements at points y_i

(the measurement points are given by the pad rows)

Variables x_i with error σ_i

- (the x coordinate of the hit is the measurement)
- Fit function: $f(y; a_1, a_2, ..., a_m)$, a_j : parameters to be determined
- N > M! (more measurement points than parameters needed!)
- For the best values a_i, sum S is a minimum :

$$S = \sum_{i=1}^{N} \left[\frac{x_{(i)} - f(y_i, a_j)}{\sigma_i} \right]^2 \rightarrow \frac{\partial S}{\partial a_j} = 0, j = 1...M$$

• for S to be a real chi-square, x_i must be Gaussian distributed with mean $f(y_i; a_i)$ and variance σ_i^2

• Straight Line: x = f(y) = ay + b

a: SlopeX

b: InterceptX [▼]_∨

• So, in this case: $S = \sum_{i} \frac{\left(x_i - a y_i - b\right)^2}{\sigma^2}$

$$\frac{\partial S}{\partial a} = -2\sum_{i} \frac{(x_i - ay_i - b)y_i}{\sigma_i^2} = 0 \quad \text{and} \quad \frac{\partial S}{\partial b} = -2\sum_{i} \frac{(x_i - ay_i - b)}{\sigma_i^2} = 0$$

with:
$$A = \sum_{i} \frac{y_{i}}{\sigma_{i}^{2}} \qquad B = \sum_{i} \frac{1}{\sigma_{i}^{2}} \qquad C = \sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}$$
$$D = \sum_{i} \frac{y_{i}^{2}}{\sigma_{i}^{2}} \qquad E = \sum_{i} \frac{x_{i}y_{i}}{\sigma_{i}^{2}} \qquad F = \sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}$$

$$B = \sum_{i} \frac{1}{\sigma_i^2}$$

$$C = \sum_{i} \frac{X_{i}}{\sigma_{i}^{2}}$$

$$D = \sum_{i} \frac{y_i^2}{\sigma_i^2}$$

$$\overline{z} = \sum_{i} \frac{x_{i} y_{i}}{\sigma_{i}^{2}}$$

$$F = \sum_{i} \frac{x_i^2}{\sigma_i^2}$$

and the parameters a and b are given by:

$$a = \frac{EB - CA}{DB - A^2}$$
 and $b = \frac{DC - EA}{DB - A^2}$

- 2nd degree polynomial: $x = f(y) = ay^2 + by + c$
- also in rotated coordinate system
- This leads to $S = \sum_{i} \frac{\left(x_i a y_i^2 b y_i c\right)^2}{\sigma_i^2}$

(minimized numerically)

Radius
$$R = \frac{a}{2}$$
 , Curvature $C = \frac{1}{R}$

Center $(x_{0}, y_{0}) \rightarrow solve equation system:$

$$(x-x_0)^2+(y-y_0)^2=R^2$$
 for 2 points (x_1,y_1) , (x_2,y_2)

Fast fit method, results can be used for circle fit

- Circle Fit: $(x-x_0)^2+(y-y_0)^2=R^2$
- also in rotated coordinate system, so the function is:

$$x = f(y) = x_0 \pm \sqrt{\frac{1}{C^2} - (y - y_0)^2}$$

This leads to

$$S = \sum_{i} \frac{\left(x_{i} - x_{0} \pm \sqrt{\frac{1}{C} - (y - y_{0})^{2}}\right)^{2}}{\sigma_{i}^{2}}$$
(minimized numerically)

Track Object

- Track Object
- Collection of constituents:
 A vector (array) of Hits resp. Pulses belonging to the track
- Track parameters:
- Intercept (where does it enter the sensitive volume)
- Slope (angle)
- Curvature
- Center of Circle
- Errors of the track parameters
- Chi Squared of the track fit (estimate of the fit quality)
- Optional: Number of parameters, dE/dx,

Maximum Likelihood Method

- A sample of **n** independent observations x₁, x₂, ... x_n
- Theoretical distribution known: f(x|a), with a: Parameter to be estimated
- Calculate the likelihood function:

$$L(a|x)=f(x_1|a)f(x_2|a)...f(x_n|a)$$

This can be recognized as the probability for observing the sequence of values $x_1, x_2, ... x_n$

- Principle: this probability is a maximum for the observed values So the parameter **a** must be such, that **L** is a maximum.
- So, **a** can be found by solving: $\frac{dL}{da} = 0$

In practice: often easier to maximize the logarithm of L: $\frac{d(\ln(L))}{da} = 0$ since: $\ln(y*z) = \ln(y) + \ln(z)$

this yields results which are equivalent to the above.

- Assumptions:
- For each row the track can be described by a straight line (height of a pad row much smaller than the radius of the curvature)

curved charge tube of real track

assumption: straight in each row

 Charge is Gaussian distributed along the track (this is a valid model for the charge deposition)

 Variations of the charge deposition are ignored: assume a constant charge deposition in a row

Likelihood function describing charge deposition per pad:

$$L_i = p_i^{n_i}$$
 , with $n_i = \frac{N_i}{G}$: number of primary $\mathrm{e^-}$, and N_i : measured $\mathrm{e^-}$ and $p_i = \frac{Q_{\mathrm{exp}}}{\sum_{n=1}^{pads/row} Q_{\mathrm{exp}}}$ (probability function)

Logarithm of product of likelihood functions of all pads:

$$\ln L = \sum_{Rows} \sum_{Pad} Q_{measured} \ln \left[\frac{Q_{expected}}{\sum_{Row} Q_{expected}} \right]$$
 which of charge distribution included in fit function as

width of charge free fitting parameter

, with
$$Q_{\exp} = \int_{\frac{-h}{2}}^{\frac{h}{2}} dy \int_{\frac{-w}{2}}^{\frac{w}{2}} dx \frac{1}{2\pi \sigma} e^{\frac{[(x-X_0)\cos(\phi)+y\sin(\phi)]^2}{2\sigma^2}}$$

for details see: "TPC Performance in Magnetic Fields with GEM and Pad Readout", D. Karlen, P. Poffenberger, G. Rosenbaum, 2005

Hit Positions

- Hit is defined as the charge deposition in a row
- The X position of this charge deposition is needed for later resolution calculation, but the Global Fit in general has no hit reconstruction
- To get the position, do a Global Fit in just one line with the width, angle fixed to the result of the track fit: this means moving a the charge distribution with fixed width and angle (depending on curvature) along the x axis until it fits best to the deposited charge in this row

 What to do with noise Pulses?
 They are not described by the theoretical distribution

 Solution: assign a higher probability for measuring a signal to all pads by introducing a constant offset: noise value N

— without noise value
— with noise value N=0.01

Example: pad row with 10 pads, pitch: 2.2mm

Track Object

- Track Object
- Collection of constituents:
 A vector (array) of Hits resp. Pulses belonging to the track
- Track parameters:
- Intercept (where does it enter the sensitive volume)
- Slope (angle)
- Curvature
- Center of Circle
- Width of charge distribution
- Errors of the track parameters
- Optional: Number of parameters, dE/dx,

Diffusion Parameters

 From the Global Fit, also the diffusion and defocussing parameters of the setup can be determined

- Fit Gaussian to every interval and get mean values (with errors)
- Width of charge distribution can be described by: $\sigma = \sqrt{D^2 z + \sigma_0}$
- Fit this function with D and σ_0 as free parameters to the mean values of the intervals to get the parameter values

Diffusion Parameters

Results from simulation compared to results from Global Fit results

 Results from Global Fit are in the right order of magnitude but underestimate the coefficients
 Among other, possible explanation: wrong noise factor (1%), further investigation planned

Remarks

- Global Fit has the advantage that pad response effects are incorporated in the fit function
- Also, missing information (damaged pad) does not affect the fit too much since the term in the sum simply vanishes

$$\ln L = \sum_{Pad} Q_{measured} \ln \left| \frac{Q_{expected}}{\sum_{Row} Q_{expected}} \right|$$

- Disadvantage: the fit is time consuming with many pad rows: for 6 pad rows Chi Squared Fit and Global Fit need approximately the same time, for 19 rows the Global Fit needs approximately three times longer than the Chi Squared Fit
- If not many pad rows are used, Global Fit can produce too good resolution results
- Width can be fixed during the fit (for a certain Z per row)
- Fit in YZ plane done with Chi Squared straight line fit

Comparison of Fit Methods

0.12

0.1

0.08

0.06

- Chi Squared Method:
 - 6 rows in comparison too good
 - 8 rows already reasonable
 - 19 rows results show expected shape and are comparable with Global Fit results for 19 rows

200

100

Point Resolution: MC, 4T, Global Fit Method

6 rows unreasonably good

300

gas: P5 (Ar-CH₄:95-5), pads: $2.2 \times 6.2 \text{ mm}^4$

500

driftlength Z [mm]

600

400

- 8 and 19 rows tend to more reasonable results
- Global Fit with fixed σ:
 - results conservative and scale with increasing number of rows
- Both flavors comparable at 19 rows

Comparison of Fit Methods

 "Robustness" of the fit methods: influence of damaged pads (dead channels) tested with Monte Carlo simulation for 4T, P5 gas

