JLC Calorimeter

Hiroyuki Matsunaga (University of Tsukuba)

For the JLC-CAL Group (KEK, Kobe, Konan, Niigata, Shinshu and Tsukuba)

Outline

Required Performance

Design Ideas and Plans

- JLC, NLC, TESLA
- **JLC Calorimeter**
- Design Concept
- Study on EMCAL/SHmax
- Granularity Optimization
- Photon Detectors

Summary

Required Performance

- At LC energies, high mass particles (W, Z, t, H?...) are produced in most events
- Most likely they decay into hadronic jets
- Accurate jets energy measurement is needed to reconstruct the high mass particles
- Excellent Jet-mass resolution is required

 \rightarrow Di-jet mass resolution better than Γ_Z, Γ_W (JLC)

Reconstructed W mass for $e^+e^- \rightarrow W^+W^-$ at \sqrt{s} = 400 GeV (Result of quick simulation)

Required Performance

There are many design parameters to be optimized

2 basic parameters for calorimeter design:

- Energy Resolution and Linearity
 - Compensation (e/h = 1) with hardware or software
- Granularity (Segmentation)
 - Clustering Algorithm
 - Track-Cluster Association Algorithm
 - Energy Flow Analysis

Both hardware and simulation studies are needed.

Energy Flow Concept

Energy Flow Technique :

- Charged particles in jets more precisely measured in tracker
- Typical multi-jet events:
 - \sim 60 %: charged particles
 - \sim 30 %: photons
 - \sim 10 %: neutral hadrons
- Use tracker for charged particles
- EMCAL for Photon
- HCAL for neutral hadrons

Design optimization for energy flow :

- Dense, highly granular EMCAL and HCAL
- High resolution and efficient tracker
- CAL inside coil

Design Ideas and Plans

Granularity	Very high	Reasonable
Experiment	TESLA, NLC(SD)	JLC, NLC (LD)
EMCAL	Si/W	Scint. Tiles/Fiber
		Scint. Strip Array
HCAL	"Digital" Calorimeter	
	Scint. Tiles/Fiber	Scint. Tiles/Fiber

Other options: EMCAL : Crystal, Shashlik

Shashlik Calorimeter

Si/W Calorimeter

- Original idea from SDC
- Used successfully for Lum. monitors at SLD/LEP
- Suited for Energy Flow
- \bullet Easily Segmented (5mm 15mm), \sim 50M pixels
- Si cost is expensive

Barrel Calorimeter of TESLA

"Digital" Calorimeter

- "Imaging/Tracking Calorimeter" for Energy Flow measurement
- Cheap, highly-segmented detectors (1cm×1cm)
- 1 (2?) bit readout
- \bullet Number of hit cells \rightarrow Energy

Same Di-jet for digital-steel(left) and for digital-tungsten(right) HCAL hep-ex/0202004 (TESLA)

"Digital" Calorimeter (cont.)

- Energy resolution: similar to analog readout
- Active medium candidates RPCs (Resistive Plate Chambers) GEMs (Gas Electron Multipliers)
- under study
 - depth
 - MIP recognition
 - Algorithm : Software compensation (π^0 recognition)
- No experience. Need verification

Tile/Fiber Sampling Calorimeter

- Hardware Compensation Possible
- Design Flexibility
- Reasonable cost
- Well-established technology
- Sufficient granularity for EMCAL ?

Scintillator tiles arranged as 5 \times 5 segmentation

JLC Calorimeter: Design Concept

 Hardware Compensation for excellent hadron energy resolution and linearity

$$rac{\sigma_E}{E} = rac{15\%}{\sqrt{E}} + 1\%$$
 (e/ γ) $rac{\sigma_E}{E} = rac{40\%}{\sqrt{E}} + 2\%$ (hadron)

- Fine Granularity for precise topological reconstruction
- Whole Calorimeter system inside the solenoid

No software compensation No extremely-fine granularity

Technology Choice

→ Tile/Fiber Sampling Calorimeter

Calorimeter Configuration

Calorimeter is in the 3 Tesla B-Field Tower Structure Crackless Hermeticity

100 cm

JLC Detector

Basic Parameters

Barrel Inner Radius	160 cm	
Barrel Outer Radius	340 cm	
Angular Coverage (full)	$ \cos heta < 0.966$	
(partial)	$ \cos heta < 0.991$	
SHmax scheme	scintillator strip	
	(1 cm-wide)	
	Option = Si-pad	$ \mathcal{H} \times \mathcal{X} $
	(1cm $ imes$ 1cm)	
Granularity		
PreSH/EMCAL transverse	$4 cm \times 4 cm$	
	(24 mrad)	
longitudinal	3 sections	
	(6+12+20 layers)	H1 H2 H3 H4
HCAL transverse	12 cm $ imes$ 12 cm	
	(72 mrad)	
longitudinal	4 sections	
	(25+30+35+40 layers)	Configuration of Baseline Barrel
Thickness		Calorimeter
PreSH	4X ₀	Galurinielei
EMCAL	23X ₀	
HCAL	$6.5\lambda_0$	

HCAL beam tests

Beam tests done at KEK (1-4 GeV) and at FNAL (10-200 GeV) to prove

- Energy Resolution / Hardware compensation
- Linearity / Dynamic Range
- Tower Boundary Uniformity
- e/π Separation Capability

Schematic view of HCAL test module with Tile/Fiber configuration

Energy Resolution & Linearity

- π energy resolution is worse than design due to "fiber-routing" acryl plate
 - \rightarrow should be OK but needs verification
- Linearity is good thanks to hardware compensation

e/π Separation with PreSH/SHmax

- \bullet pion rejection \sim 1/1400
- \bullet efficiency for electron \sim 98 %
- position resolution 2~3 mm due to noise/cross-talk needs improvements

Granularity Optimization

Optimization with full simulator based on GEANT3

- Hadron shower clustering algorithm under study 2D-JADE, 2/3D-contiguous : not working well Larger spatial fluctuation in hadron shower development → Split a cluster in two (or more)
- Cluster-track association algorithm under study

Simulation study is severely behind schedule

Longitudinal Shower profile

- Longitudinal shower profile and event-by-event fluctuation for hadron shower
 - Improve hadron energy resolution
 - Implementation of hadron shower generator
 - $-e/\pi$ separation capability

Longitudinal Shower profile (cont.)

 $\delta_i^{(k)} = ph_i^{(k)} - \overline{ph_i}$ at *i*-th super-layer of *k*-th event $ilde{\delta}_i^{(k)}$: Orthogonalized $\delta_i^{(k)}$

Un-correlated fluctuation for hadrons

Orthogogonalization unsuccessful for hadrons

Longitudinal Shower profile (cont.)

R & D on EMCAL and SHmax

EMCAL:

- \bullet Scint. Tile of 4cm \times 4cm \times 1mm
 - 4cm is limited by fiber curvature in the tile
- \bullet Scint. Strip of 1cm \times 20cm \times 2mm
 - finer granularity
 - crossed-strip layout like SHmax
 - needs super multi-channel photo detectors
 - ghost-rejection capability by full simulation

Staggered fiber layout on every other layer

 \rightarrow Reduce non-uniformity

SHmax :

- \bullet Scint. Strip of 1cm \times 20cm \times 1cm
 - WLS fiber + multi-channel Photon detector
 - high-gain APD attached directly at the end of Scint. strip

Hiroyuki Matsunaga, The 5th ACFA Workshop on Physics and Detector at Linear Collider, July 10–12, 2002

Scint. Tile & Strip

Scint. Tile with WLS fiber

Scint. Strips with WLS fibers

Bench Test: Tile/Fiber module

Bench Test:

- β rays from RI source
- Multi-Anode PMT

Bench Test: Tile/Fiber module (cont.)

ADC distribution

Uniformity check (1-dim.)

 N_{pe} = 2.2

- Expect a factor of \sim 1.6 improvement by polishing the fiber end and sputtering AI to it

Uniformity : < 5%< 2% (inside fiber groove)

Bench Test: Scint. Strip module

2001/03/31 11.16

Setup of bench test β rays from ⁹⁰Sr, mapping by X-Y stage

Photo-electron yield over a strip

Non-uniformity \sim 4.8 % Similar to square tiles

Plan for Beam Tests: EMCAL

Aims of the beam test:

- Uniformity
- Ghost rejection capability
- Energy Resolution for electron
- Input for simulation study
- New SHmax scheme

November 2002: π 2 beam line at KEK

Photon Detectors

Photon detectors used in 3 Tesla Magnetic Field

- Multi-channel(61ch) Hybrid Photo Diodes (HPDs) :
 - promising (cost-down needed)
- Hybrid Avalanche Photo Diodes (HAPDs) :
 - difficult to make multi-pixel HAPDs

Photon Detectors (cont.)

- For Scintillator-strip EMCAL/SHmax :
 - Electron-Bombarded CCD (EBCCD)
 Ultra-multi-pixel devices, single-photon sensitivity
 Higher gain is needed.

Gain vs. Photo-cathode voltage for proximity-focused EBCCD

- Si-Photomultipliers (Si-PM's) : study at Moscow
 - output signal is proportional to # of pixels fired
 - sensitive to single photon

Summary

JLC Calorimeter :

- Well-established technology: Tile/Fiber scheme
- High Performance: Hermeticity, Resolution, Linearity
- Reasonable Cost: Casting enables further cost reduction

Verification in progress :

- EMCAL/SHmax Beam tests in 2002,2003
- Granularity optimization, Clustering Algorithm needs Full Simulation
- Photon Devices