Development of an Hadronic Tile Calorimeter for TESLA

E. Garutti (for DESY-HCAL group)

- New calorimeter concept for linear collider detector
- The analogue hadronic calorimeter for TESLA
- Detector R&D:
 - -Tile-fiber system
 - Fiber coupling to photo-detector
 - Photo-detectors options
 - → Avalanche Photo-Diode (Hamamatsu)
 - → Silicon Photo-Multiplier (MEPHI, PULSAR)
- Results from first prototype → establish new technologies

Preparation of physics prototype → physics studies
 10 March 2004
 Erika Garutti - KEK, Japan

Physics Motivation

From the 4th ECFA workshop (Jean Claude Brient):

Di-jet mass resolution, lepton tagging in jet environment, etc...

Shower to shower separability

Separation charged hadrons/photon and charged hadrons/neutral hadrons

Give access to the best possible Ejet and di-jet mass resolution

Lepton identification in jet

electron, mu and tau tagging in jet Identification of jet flavor, W vs Z, etc

GeV

Masse j₃j₄

Total segmentation and high granularity is mandatory !!!

10 March 2004

Needed to see a signal at 5σ
➤ Higgs self-coupling and ?? ttH ,...??

Dependence on the measurement precision➢ Higgs BR in WW

 \succ W_L coupling (vvW⁺W⁻ versus vvZZ)

Particle Flow Algorithm

Based on two ideas:

-TPC momentum resolution higher than calorimeter energy resolution -Vector subtraction from overlapping showers is more effective than scalar subtraction

Particle flow concept:

- for all charged particles merge TPC track
- to calorimeter clusters
- substitute calorimeter energy with momentum
- the rest of energy is assigned to neutral clusters, divided into: gammas (ECAL) neutral hadrons (HCAL)

→ Such a technique requires high granularity of both ECAL and HCAL

The CALICE Collaboration

CAloremeter for the LInear Collider with Electrons

168 physicists from 28 institutes and 8 countries Coming from the 3 regions (America, Asia and Europe)

ECAL project:

- 40 layers of W-Si sandwich with pads of $1 \times 1 \text{ cm}^2 \rightarrow \text{TRACKER CALORIMETER}$ energy resolution on electron/photon ~ $\Delta E/E = 11\% / \text{sqrt}(E)$

- other options are also possible

HCAL project:

Solution 1) Tile HCAL

3x3 to 12x12 cm² tiles with analogue readout

→ Developed at DESY

Solution 2) Digital HCAL

← see the rest of the talk

A tracker calorimeter with 1x1 cm² pads and 40 layers with digital readout 10 March 2004 Erika Garutti - KEK, Japan

Tile HCAL

Sampling structure:

20mm Fe + 5mm Scintillator

(~ 1.15 X_0 or 0.12 λ)

Tile readout:

Wave-Length Shifter fibers

- + Photo-detector
 - → Two possibility:

10 March 2004

Erika Garutti - KEK, Japan

Photo Detectors

Silicon photo-multiplier (SiPM):

- new detector concept, first test with beam
- sizes: 1x1mm², 1024 pixels/mm²
- gain ~ 2*10⁶, quantum eff. ~ 15-20%
- single tile read out / mounted directly on tile
 Avalanche photo-diode (APD):
- different from those used by CERN experiments
- 3x3mm² low capacity
- gain ~ 500, quantum eff. ~ 75%
- cell read out: 3 tiles

Silicon PhotoMultiplier (SiPM) MEPhI&PULSAR

SiPM

Pixels of the SiPM

7

Principle of operation

ADP operated with avalanche multiplication ~ 50-500 → signal proportional to energy deposited

SiPM operated in Geiger mode avalanche multiplication ~2*10⁶ - R = 400 k Ω prevents detector break down

→ Proportionality to energy is lost

10 March 2004

SiPM main characteristics

➢Pixel size ~20-30µm → important quantity: Inter-pixel cross-talk

• electrical minimized by:

- decoupling quenching resistor for each pixel

- boundaries between pixels to decouple them

electrically \rightarrow reduce sensitive area

→ geometrical efficiency

• optical:

-due to photons created in Geiger discharge per one electron and collected on adjacent pixel

> Working point: $V_{Bias} = V_{breakdown} + \Delta V \sim 50-60 V$ $\Delta V = 10-15\%$ above breakdown voltage Each pixel behaves as a Geiger counter with $Q_{pixel} = \Delta V C_{pixel}$ with $C_{pixel} \sim 50 \text{fmF} \rightarrow Q_{pixel} \sim 300 \text{fm}C = 2*10^6 \text{e}$

Dynamic range ~ number of pixels Erika Garutti - KEK, Japan > saturation

10 March 2004

SiPM main characteristics (II)

 \rightarrow carrier drift velocity ~ 10⁷ cm/s

→very short Geiger discharge development < 500 ps

 \rightarrow pixel recovery time = ($C_{\text{pixel}} R_{\text{pixel}}$) ~ 30 ns

Photon detection efficiency (PDE):

- for SiPM the QE (~90%) is multiplied by Geiger efficiency (~60%) and by geometrical efficiency (sensitive/total area ~30%)

- highest efficiency for green/blue light

 \rightarrow important when using with WLS fibers

Temperature and voltage dependence: -7 °C → +3% Gain and PDE +0.15 V → +3% Gain and PDE

SiPM response function

10 March 2004

Erika Garutti - KEK, Japan

Counts

SiPM dark rate

Spectrum of β -electrons from Sr^{90} source on tile-fiber system with SiPM readout

efficiency ~ 90% → dark rate ~ 2 Hz Determined by optical crosstalk between adjacent pixels

Ongoing studies at MEPHI/PULSAR to reduce dark rate

Signal to Noise ratio

Signal to noise ratio of SiPM at room temperature compared to APDs and Visible Light Photo Detectors

→Improvement w.r.t. APD due to absence of electronics noise (no preamplifier needed for SiPM) and low Excess Noise Factor (ENF) connected with Geiger discharge development (<1.05 for SiPM, 2-3 for APD)

Detector characterization

SiPM Z200 SiPM Z300

Fig 1: Current measurement for different voltages (notice log-scale) U [V] - high systematic uncertainty due to electronical noise - difference in measurements due to relaxation

find working point:
~10-15% above breakdown voltage

optimize working point for: Noise frequency ~ 1MHz

Gain ~ 10⁶ e

apan

The MiniCal Prototype

First working prototype of Analogue HCAL:

Study of energy resolution and shower shape Control calibration and monitoring

Compare with MC prediction \rightarrow tune MC Study various photo-detectors against tuned MC

Saturation effects in the range 1 - 7 GeV

- → dynamic range
- \rightarrow linearity

Get ready for studies on Physics Prototype ...

The MiniCal Prototype

The Cassette structure

MIP Calibration for PM

→ Obtained using 3 GeV electron beam on single tile, w/o absorber in front

MIP = MPV - pedestal

Gauss for peak position +
 Landau for tail

• Pedestal determination: 1 ADC channel shift = 1% uncertainty in σ/E

Erika Garutti - KEK, Japan

MC simulation of MIP

- detector description implemented in GEANT4
- MC has to be smeared according to detector properties
- single tile MC calibration needed:
 - # photo electrons /MIP
 - width of 1^{st} photo electron
- good description of MIP shape after
 MC calibration

hit energy in ADC

Slow Control Monitor

Daily monitor of MIP calibration versus:

- temperature fluctuations
- High Voltage stability

(example for PM monitoring)

→ 2% calibration reproducibility

→ related to temperature variation

Erika Garutti - KEK, Japan

Tile Calibration Scan

9 point scan of the tile centre according to:

→2% possible calibration uncertainty due to tile inhomogeneity

10 March 2004

Erika Garutti - KEK, Japan

Tile homogeneity

25 points scan over tile \rightarrow homogeneity better than 4%

Two Particle Events

Linearity of PM Response

Results comparison: N MIP

Sum of total energy deposited in calorimeter calibrated in number of MIPs

Very good agreement between
 SiPM and PM

→Ideal MC does not include detector properties, just MiniCal geometry

Energy Resolution

→Problems with 1 GeV beam probably related to magnet hysteresis

Very good agreement between PM and SiPM

→Ideal MC does not include detector properties, just MiniCal geometry

Future: the physics prototype

Mechanical structure

Cassette insertion from the side
VFE electronic
VME-DAQ on platform

Beam height 2,30 m, platform: weight ~ 10 t, width ~ 5 m, depth ~ 2 m

10 March 2004

Erika Garutti - KEK, Japan

Tile geometry for Physics Prototype

Tile sizes:

3x3 cm², 6x6 cm², 12x12 cm²

Geometry optimization

- Define physical observable for optimization:
 Shower reconstruction/separation
- •Generate two 10 GeV showers initiated by $\pi + \text{ and } K_0{}^L$
- •Use track information for π +
- •Complete shower reconstruction algorithm used (see papers from Vasilly Morgunov)
- •Test three options of tile size and readout scheme:
 - 1 layer of 3x3 cm² tiles
 - 2 layers of 3x3 cm² tiles
 - 1 layer of 5x5 cm² tiles

•Compare to ideal particle flow algorithm

10 March 2004

Geometry optimization

Shower separation quality is defined as the fraction of events in which the neutral shower is consistent with the energy in the case of ideal P-flow within 3σ .

Shower separation quality versus generated shower distance gives a good criterion for geometry comparison

 \rightarrow Final choice: 1 layer of 3x3 cm² tiles in the core

LED Monitoring

 \rightarrow

Next studies will focus on a reliable LED monitoring system for large number of tiles

Requirements:

- low light yield (~ 5-10 ph.e.) pre-amplification is required

→ to monitor SiPM gain

medium light yield (~ 25 ph.e ~ 1 MIP)
to monitor stability of MIP calibration
high light yield (~ 200-500 ph.e.)
to monitor saturation behaviour

Outlook

- Successful test of MiniCal prototype with PM/SiPM readout
- Established SiPM technology for calorimeter readout
- ADP test still undergoing at DESY
 - exchange experience with KEK on APD and other photo-detectors
- Physics prototype under construction
- Geometry optimized for best shower separation
- First tests planed for beginning of 2005

MC Simulation of Two-particle Events

Res. = 27.6/438.3 = 6.30%

Res. = 27.8/437.7 = 6.35%