Study of small plastic scintillator tiles for the EM calorimeter at JLC

Allister Levi Sanchez, 宮田等 新潟大学自然科学研究科 (for the JLC Calorimeter Group)

日本物理学会第57回年次大会@立命館大学(京都) 2002年3月24日(日)-27日(水)

Outline

- Introduction
- Compatibility of scintillators, WLS fibers, and PMTs.
- Bench test
- Future plan

Introduction

- A good calorimeter is important for JLC
- Baseline EMC design in ACFA Report (KEK Report 2001-11):
 - Compensated sampling calorimeter
 - (4mm Lead + 1mm Scintillator)
 - Tile/fiber technique
 - Transverse cell size = 4cm × 4cm
- ⇒ We are studying this small (4cm×4cm×1mm) tile calorimeter system.

Small Tile Calorimeter Design

Compatibility of Scintillators, Fibers & PMTs

- We want to know which combinations of plastic scintillator, wavelength shifting (WLS) fibers, and PMT would give better light yield
- Data used were reconstructed from manufacturer's data sheets
- Materials Considered
 - Plastic Scintillators
 - Kuraray -- SCSN-61, SCSN-81
 - Bicron -- BC-400, BC-404, BC-408, BC-412, BC-416
 - OKEN/NE Technology NE107A
 - WLS Fibers
 - Kuraray Y-7, Y-8, Y-9, Y-10, Y-11
 - PMTs
 - Hamamatsu H6568 (multi-anode), H7422-40

Compatibility Calculation Method

- Scintillator & Fiber Compatibility
 - $S(\lambda) = scint.$ emission, $F_a(\lambda) = fiber absorption$

•
$$\alpha = \int S(\lambda) \bullet F_a(\lambda) d\lambda$$

- Fiber & PMT Compatibility
 - $F_e(\lambda)$ = fiber emission, $P(\lambda)$ = PMT quant. eff.

•
$$\omega = \int F_{e}(\lambda) \bullet P(\lambda) d\lambda$$

Total Compatibility

• α • ω

Normalized Results (H6568 PMT)

BC-412+Y-11+H6568: 1.00	SCSN-81+Y-10+H6568: 0.550	
SCSN-61+Y-11+H6568: 0.939	NE102A+Y-10+H6568: 0.549	
BC-408+Y-11+H6568: 0.936	BC-400+Y-10+H6568: 0.548	
BC-412+Y-9+H6568: 0.919	BC-412+Y-7+H6568: 0.543	
SCSN-81+Y-11+H6568: 0.842	BC-408+Y-8+H6568: 0.539	
NE102A+Y-11+H6568: 0.840	SCSN-81+Y-8+H6568: 0.518	
BC-400+Y-11+H6568: 0.839	BC-400+Y-8+H6568: 0.510	
BC-408+Y-9+H6568: 0.825	NE102A+Y-8+H6568: 0.509	
SCSN-61+Y-9+H6568: 0.810	SCSN-61+Y-8+H6568: 0.504	
NE102A+Y-9+H6568: 0.749	BC-408+Y-7+H6568: 0.463	
BC-400+Y-9+H6568: 0.748	BC-416+Y-8+H6568: 0.452	
SCSN-81+Y-9+H6568: 0.746	SCSN-61+Y-7+H6568: 0.446	
BC-412+Y-8+H6568: 0.713	BC-416+Y-10+H6568: 0.430	
BC-404+Y-11+H6568: 0.680	SCSN-81+Y-7+H6568: 0.425	
BC-412+Y-10+H6568: 0.678	NE102A+Y-7+H6568: 0.422	
BC-416+Y-11+H6568: 0.633	BC-400+Y-7+H6568: 0.421	
BC-408+Y-10+H6568: 0.607	BC-404+Y-10+H6568: 0.410	
SCSN-61+Y-10+H6568: 0.596	BC-416+Y-7+H6568: 0.344	
BC-416+Y-9+H6568: 0.582	BC-404+Y-7+H6568: 0.291	
BC-404+Y-9+H6568: 0.559	BC-404+Y-8+H6568: 0.289	

Norm. Results (H7422-40 PMT)

BC-412+Y-8+H7422-40: 1.00 BC-412+Y-11+H7422-40: 0.994 BC-412+Y-9+H7422-40: 0.962 SCSN-61+Y-11+H7422-40: 0.934 BC-408+Y-11+H7422-40: 0.931 BC-408+Y-9+H7422-40: 0.863 SCSN-61+Y-9+H7422-40: 0.848 SCSN-81+Y-11+H7422-40: 0.837 NE102A+Y-11+H7422-40: 0.836 BC-400+Y-11+H7422-40.0835 NE102A+Y-9+H7422-40: 0.784 BC-400+Y-9+H7422-40: 0.783 SCSN-81+Y-9+H7422-40: 0.781 BC-408+Y-8+H7422-40: 0.756 BC-412+Y-10+H7422-40: 0.729 SCSN-81+Y-8+H7422-40: 0.727 BC-400+Y-8+H7422-40: 0.715 NE102A+Y-8+H7422-40: 0.714 SCSN-61+Y-8+H7422-40: 0.707 BC-404+Y-11+H7422-40: 0.676

BC-408+Y-10+H7422-40: 0.652 SCSN-61+Y-10+H7422-40: 0.641 BC-416+Y-8+H7422-40: 0.633 BC-416+Y-11+H7422-40: 0.630 BC-416+Y-9+H7422-40: 0.609 BC-412+Y-7+H7422-40: 0.606 SCSN-81+Y-10+H7422-40: 0.591 NE102A+Y-10+H7422-40: 0.590 BC-400+Y-10+H7422-40: 0.590 BC-404+Y-9+H7422-40.0 585 BC-408+Y-7+H7422-40: 0.517 SCSN-61+Y-7+H7422-40: 0.499 SCSN-81+Y-7+H7422-40: 0.475 NE102A+Y-7+H7422-40: 0.471 BC-400+Y-7+H7422-40: 0.471 BC-416+Y-10+H7422-40: 0.462 BC-404+Y-10+H7422-40: 0.441 BC-404+Y-8+H7422-40: 0.405 BC-416+Y-7+H7422-40: 0.384 BC-404+Y-7+H7422-40: 0.323

Normalized Results (All PMTs)

H7422-40		H6568	
BC-412+Y-8: 1.00	BC-408+Y-10: 0.652	BC-412+Y-11: 0.301	SCSN-81+Y-10: 0.165
BC-412+Y-11: 0.994	SCSN-61+Y-10: 0.641	SCSN-61+Y-11: 0.282	NE102A+Y-10: 0.165
BC-412+Y-9: 0.962	BC-416+Y-8: 0.633	BC-408+Y-11: 0.282	BC-400+Y-10: 0.165
SCSN-61+Y-11: 0.934	BC-416+Y-11: 0.630	BC-412+Y-9: 0.276	BC-412+Y-7: 0.163
BC-408+Y-11: 0.931	BC-416+Y-9: 0.609	SCSN-81+Y-11: 0.253	BC-408+Y-8: 0.162
BC-408+Y-9: 0.863	BC-412+Y-7: 0.606	NE102A+Y-11: 0.253	SCSN-81+Y-8: 0.156
SCSN-61+Y-9: 0.848	SCSN-81+Y-10: 0.591	BC-400+Y-11: 0.252	BC-400+Y-8: 0.153
SCSN-81+Y-11: 0.837	NE102A+Y-10: 0.590	BC-408+Y-9: 0.248	NE102A+Y-8: 0.153
NE102A+Y-11: 0.836	BC-400+Y-10: 0.590	SCSN-61+Y-9: 0.244	SCSN-61+Y-8: 0.152
BC-400+Y-11: 0.835	BC-404+Y-9: 0.585	NE102A+Y-9: 0.225	BC-408+Y-7: 0.140
NE102A+Y-9: 0.784	BC-408+Y-7: 0.517	BC-400+Y-9: 0.225	BC-416+Y-8: 0.136
BC-400+Y-9: 0.783	SCSN-61+Y-7: 0.499	SCSN-81+Y-9: 0.224	SCSN-61+Y-7: 0.134
SCSN-81+Y-9: 0.781	SCSN-81+Y-7: 0.475	BC-412+Y-8: 0.215	BC-416+Y-10: 0.129
BC-408+Y-8: 0.756	NE102A+Y-7: 0.471	BC-404+Y-11: 0.204	SCSN-81+Y-7: 0.128
BC-412+Y-10: 0.729	BC-400+Y-7: 0.471	BC-412+Y-10: 0.204	NE102A+Y-7: 0.127
SCSN-81+Y-8: 0.727	BC-416+Y-10: 0.462	BC-416+Y-11: 0.190	BC-400+Y-7: 0.127
BC-400+Y-8: 0.715	BC-404+Y-10: 0.441	BC-408+Y-10: 0.183	BC-404+Y-10: 0.123
NE102A+Y-8: 0.714	BC-404+Y-8: 0.405	SCSN-61+Y-10: 0.179	BC-416+Y-7: 0.103
SCSN-61+Y-8: 0.707	BC-416+Y-7: 0.384	BC-416+Y-9: 0.175	BC-404+Y-7: 0.087
BC-404+Y-11: 0.676	BC-404+Y-7: 0.323	BC-404+Y-9: 0.168	BC-404+Y-8: 0.087

Calculation Result

- Best combination using H6568 PMT is
 BC-412 + Y-11 + H6568
- Best combination with H6568 gives only 30% of the best combination with H7422-40 PMT
 - BC-412 + Y-8 + H7422-40
- However, for beam test, we plan to use H6568 PMT

Bench Test

- We use: NE107A scintillator, Y-7 (400ppm)
 WLS fiber, H6568 PMT
- Tile design and construction
 - Tile cut by Kyoei Engineering (Shibata City, Niigata Prefecture, Japan)
 - Edges painted with white reflective paint
 - Fiber inserted by hand
 - Total fiber length = 50cm
 - Whole tile is wrapped with a white reflective tape

Bench Test Experimental Setup

PMT Operating Voltage: -800 V

Oscilloscope Signal

First observed signal

Data from digital oscilloscope Typical integrated yield: About 5-7 photoelectrons

ADC Measurement Logic

ADC Count Distribution

+18mm

Uniformity test (Early results)

ADC Count Distribution (new logic)

- Find single photon peak
- Re-do uniformity test with new logic
- Get ready for beam test