GATE Simulation study

24 / Oct. / 2014 Ryo Hamanishi

Contents

• GATE simulation

 optimization of copper ring and Cathode for photon collection

GATE simulation

Cathode

Detection efficiency for photon

- In order to improve the detection efficiency for photon, the study focus on the optimization of geometry, especially copper rings and cathode.
- Changed the aperture ration of cathode and the shape of copper rings.

XEMIS2 geometry and source

- radial 7 < r < 19 cm
- axial (z) Length = 2 × 12 cm (divided by cathode)
- Electric Field in z direction 2 kV/cm
- Pad size : 3.175 x 3.175 mm²
- Source
 - Positron
 - Shape : sphere (r = 1.0 cm)
 - Direction : constant ($\theta = 60^{\circ}$, $\phi = 90^{\circ}$)
- Drift velocity : 2.3 mm/usec
- PMTs
 - 2inch : 4 x 20 (4.624 x 4.624 cm²) (divide PhotoCathode by 2(v) and 4(u))

Table

- The table shows the matrix of cathode and copper rings.
 - (width, height, interval)
 - C.R. means "Copper Ring". A.R. means "Aperture Ratio".

C.R. A.R.	Patterm0	Patterm1	Pattern2	Pattern3		
1.0	(0, 0, 0)	(4, 1, 5)	(2, 1, 5)	(4, 1, 10)		
0.5	(0, 0, 0)	(4, 1, 5)	(2, 1, 5)	(4, 1, 10)		♦
0	(0, 0, 0)	(4, 1, 5)	(2, 1, 5)	(4, 1, 10)	Width H	eigh

Results

- These show the average number of photoelectron detected by PMTs.
 - Energy of gamma is 511[keV].
 - Data acquisition is not completed at A.P. = 0.5, because definition of geometry is complicated.

Conclusion

- Check the effect of copper ring and cathode.
- Interval of copper ring is more influential than width for photon collection.
- The evaluation of cathode is not completed because it is difficult to define the mesh cathode.
- To evaluate the shape of copper ring and cathode, I need to measure the energy resolution.

- Change the geometry

 For mesh cathode
- evaluate the energy resolution