GATE Simulation study

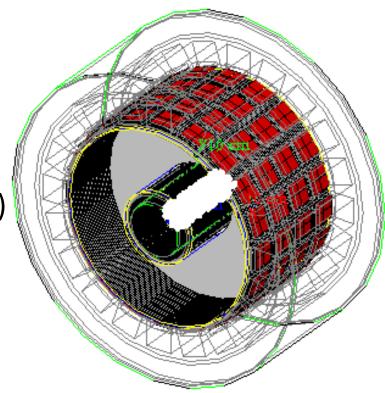
27 / 6 / 2014 Ryo Hamanishi

Contents

- GATE simulation
 - -Binary output
 - -New geometry
 - Change γ source option
 - -Getting *u* and *v* position

GATE simulation

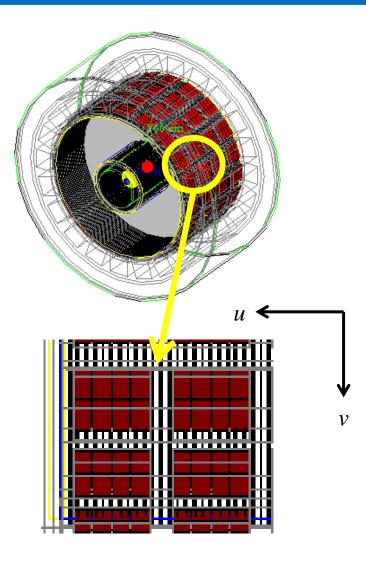
Binary output


- Studied binary output of GATE output function for reducing file size
 - Output contents are same
 - File size is about 60%, comparing with ASCIIform.
 - Example (one of test run)
 - ASCIIform : 627 MB
 - Binary : 392 MB
 - ROOT : 138 MB

XEMIS2 Geometry

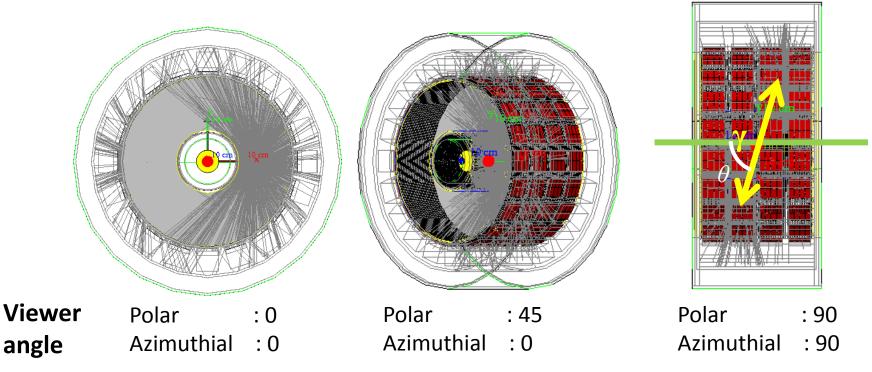
- radial 7 < r < 19 cm
- •axial (z) Length = 2×12 cm
- (divided by cathode)
- •Electric Field in z direction 2 kV/cm
- •Pad size : 3.175 x 3.175 mm²
- •Source ⁴⁴Sc (β ⁺, γ : 1.157 MeV)
- •Source position
- (cylinder : 0 < r < 2.5 cm -7.5 < z <7.5 cm)
- •Drift velocity : 3 mm/usec
- •PMTs
 - 2inch : 4 x 20

 (4.624 x 4.624 cm²)
 (divide PhotoCathode by 4)



New geometry

 Changed PhotoCathode for getting higher resolution


• Divided by 2 (*v*-direction) X 4 (*u*-direction)

Change γ source option

- For the test of photon distribution
- Changed ⁴⁴Sc to only two γ (511 keV X 2)
- Direction is constant (φ : 0°, θ : 70°)

Getting *u* and *v* positions

Method

- Edit View Search Terminal Help
- 1
 0
 0
 2
 0
 0
 10
 3
 7
 0
 6.216121252618893864

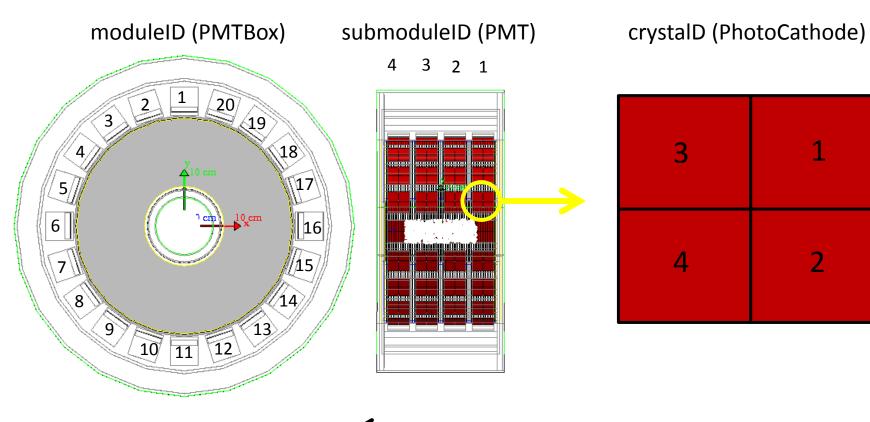
 4
 2
 1
 1
 0 OpticalAbsorption ActiveZone_phys NULL
 6.215872804741048212

 2
 0
 0
 2
 0
 0
 15
 3
 6
 0
 6.215872804741048212

 4
 2
 1
 1
 0 OpticalAbsorption ActiveZone_phys NULL
 0
 6.217078234405730408

 3
 0
 0
 2
 0
 0
 15
 2
 0
 0
 6.217078234405730408

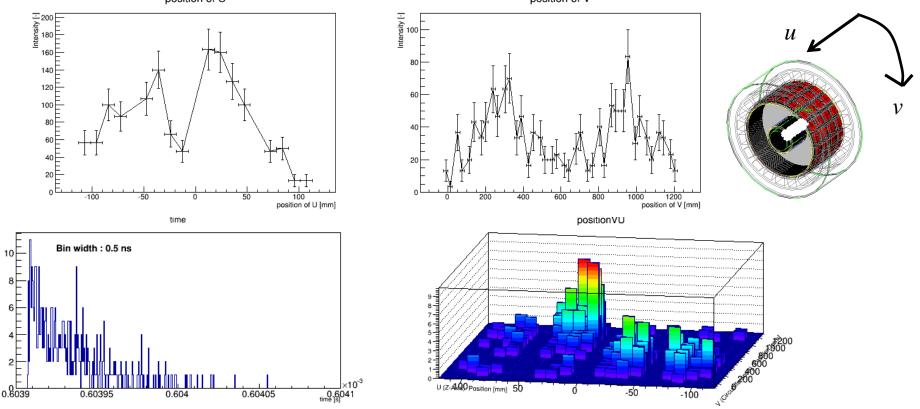
 0
 2
 1
 0
 0
 0
 15
 2
 0
 0
 6.217078234405730408


 0
 2
 1
 0
 0
 0
 15
 2
 0
 0
 6.217927861748176281

 4
 0
 0
 2
 0
 0
 16
 3
 2
 0
 6.217927861748176281
- 1. get the entry of crystalID, submoduleID and module ID (next page) from ASCII form output
- 2. generate the entry position from IDs (entry position corresponding to the IDs is prepared in advance)
- 3. Get the number of entry in each position
- 4. make arrays of posU(V)[i], posU(V)_count[i] and errors
- 5. Graphed (TGraphErrors)

ID Position

• Three ID position



Z

- Made time histogram for waveform
- Time histogram shows the timing of all photon entries in one event. (only one two γ generated)

Conclusion

- Changed PhotoCathode (2 X 2 → 2 X 4) and γ source (⁴⁴Sc → only two γ)
- Got the *u* and *v* position and made time histogram
 - Multi hit event was generated (compton scattering) ? -> confirm after
 - It is difficult to separate compton event from time histogram because it needs very high time resolution (~ 1 ns)

• Study the algorithm for clustering

 Test the algorithm to the data which is introduced in previous slide