Study Plan and GATE Simulation

6 / 6 / 14 Ryo Hamanishi

Contents

- Study plan
- Algorism
 - Detecting the interaction position
- GATE simulation
 - Confirmed moduleID and crystalID and (x, y, z)
 - Convert coordinates to (u, v, w)

(cylindrical coordinate)

Study plan

Study plan

- For TPC, we will establish the algorism, which gets the interaction position and energy deposit by analyzing photon distribution.
- I will study the algorism which detects the interaction position. MEG experiment group (Mr. Satoshi Mihara) uses it, so I will refer to their theory.
- After study for algorism and forming algorism, I want to talk about it with you directly, in Nantes (October or November?).

Study purpose

- The purpose
 - Establishing the algorism for detecting interaction position, which has a few mm as target value
 - Some pulses are detected by TPC in the one trigger. In this case, PMTs information very valid for TPC to get the exact interaction position.

Study purpose

energy in liquid xenon.

compton scattering events

Algorism

Algorism

Algorism for interaction position

- Clustering the PMT signals to distinguish interaction
- Finding the peak position of signal from each PMTs
- Fitting the photon distribution detected by PMTs (only some PMTs which locate center position from peak)
- Calculating the depth of interaction position by σ (fitting parameter)

GATE simulation

Confirm PMTs position

• To confirm relationship of moduleID and crystalID and (*x*, *y*, *z*), I made the event which γ incident to liquid xenon with θ 225 and φ 0 direction.

Confirm PMTs position

• The distribution (*x*, *y*, *z*)

- No1 = (-71.5mm , 181.5 mm , -91.0 mm), No2 = (-126.5 mm , 148.5 mm , -91.0 mm)
- No3 = (-170.5 mm , 104.5 mm , -91.0 mm), No4 = (-187.0 mm , 49.5 mm , -91.0 mm)
- No5 = (-192.5 mm , -16.5 mm , -91.0 mm), No6 = (-181.5 mm , -71.5 mm , -91.0 mm)
- No7 = (-148.5 mm , -126.5 mm , -91.0 mm), No8 = (-104.5 mm , -170.5 mm , -91.0 mm)
- No9 = (-49.5 mm, -187.0 mm, -91.0 mm), No10 = (16.5 mm, -192.5 mm, -91.0 mm)
- No11 = (71.5 mm , -181.5 mm , -91.0 mm), No12 = (126.5 mm , -148.5 mm , -91.0 mm)
- No13 = (170.5 mm , -104.5 mm , -91.0 mm), No14 = (187.0 mm , -49.5 mm , -91.0 mm)
- No15 = (192.5 mm , 16.5 mm , -91.0 mm), No16 = (181.5 mm , 71.5 mm , -91.0 mm)
- No17 = (148.5 mm , 126.5 mm , -91.0 mm), No18 = (104.5 mm , 170.5 mm , -91.0 mm)
- No19 = (49.5 mm , 187.0 mm , -91.0 mm), No20 = (-16.5 mm , 192.5 mm , -91.0 mm)
- After No21, only z positions are changed.

(No21~No40 : -32.5 mm, No41~No60 : 32.5 mm, No61~No80 : 91 mm)

Confirm PMTs position

• Assign the PMT serial number

Convert coordinates

• Converted

(x, y, z) to(u, v, w)
(Cartesian coordinate
→ Cylindrical coordinate)

PMT_No1 = (-91.0 mm , 369.8mm , 195.1 mm) , PMT_No2 = (-91.0 mm , 432.5 mm , 195.1 mm)
PMT_No3 = (-91.0 mm , 492.4 mm , 199.9 mm) , PMT_No4 = (-91.0 mm , 547.7 mm , 193.4 mm)
PMT_No5 = (-91.0 mm , -580.6 mm , 193.2 mm) , PMT_No6 = (-91.0 mm , -525.6 mm , 195.0 mm)
PMT_No7 = (-91.0 mm , -462.8 mm , 195.1 mm) , PMT_No8 = (-91.0 mm , -402.9 mm , 199.9 mm)
PMT_No9 = (-91.0 mm , -347.6 mm , 193.4 mm) , PMT_No10 = (-91.0 mm , -282.2 mm , 193.2 mm)
PMT_No11 = (-91.0 mm , -227.1 mm , 195.0 mm) , PMT_No12 = (-91.0 mm , -164.4 mm , 195.0 mm)
PMT_No13 = (-91.0 mm , -104.5 mm , 199.9 mm) , PMT_No14 = (-91.0 mm , -49.2 mm , 193.4 mm)
PMT_No15 = (-91.0 mm , 16.2 mm , 193.2 mm) , PMT_No16 = (-91.0 mm , 71.30 mm , 195.0 mm)
PMT_No17 = (-91.0 mm , 134.0 mm , 195.0 mm) , PMT_No18 = (-91.0 mm , 193.4 mm , 199.9 mm)
PMT_No19 = (-91.0 mm , 249.3 mm , 193.4 mm) , PMT_No20 = (-91.0 mm , 314.6 mm , 193.2 mm)

Photo Cathode was set at 19.5 cm from center, so it is almost correct. The resolution of detecting (x, y, z) due to these error