PET development at KEK Liquid Xenon TPC for a gamma detector (TXePET)

T. Tauchi (KEK) 1 February 2010

2010年3月9日火曜日

LXeTPC project since 2007.4 as a KEKDTP project Detection of KeV-MeV "gammas" with 3D positions and energy of high resolutions

Applications : Gamma ray astronomy; Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET); Dark matter, Double β decay experiments

KEK : liquefaction & purification, PMT, TPC, DAQ T.Tauchi, A.Maki, T.Haruyama, S.Tanaka, S.Mihara, T.Saeki K.Kasami, S.Suzuki Saga univ. : TPC, simulation, FE ASIC chip, test A.Sugiyama, T.Higashi(D3) Tokyo univ. : TPC, PMT, simulation, test T.Mori, Y.Fujii(M1) National Institute of Radiological Science : PET M.Kumada, T.Tomitani, C.Toramatsu Yokohama National univ. : PMT, Xe-property S.Nakamura Cooperation: KEK electronics system group, DAQ M.Tanaka et al.

Next-generation PET with LXeTPC

TXePET

Previous Activities

Proposal to KEKDTP 2007.4 2007.4 - Preparation of prototype New laboratory was completed 2008.2 2008.4.30 Refrigerator system was completed 2008.5.7 Chamber was filled with liquid Xenon in the first time w/o a detector. 2008.5.22 First scintillation signal was observed 2009.2.25 First charge signals from cosmic rays(11) 2009.3.31 First charge signals from α sources(45) Improving vacuum system and 4ch pad readout 2009.4.24 This experiment

(days since purification/circulation)

Experimental setup

α source of ²⁴¹Am (200Bq)

ARRES

PMT

This Experiment in 2009

4/24 15:04 Start of evacuation in the chamber 4/27 - 30 Vacuum build up tests in three times @ 1.4 x 10⁻⁴Pa 5/2 12:15 Gas phase purification/circulation with 4L/min 5/10 16:52 First observation of charge signals from cosmic rays(8) 5/20 17:40 Liquid phase purification/circulation with 1L/min 5/22 14:44 First observation of α charge signals (20mV)(20) 6/29 17:15 α charge signals to 100mV w/o LPF 6/25 -7/9 Electric field dependence of charge and light signals 7/23 - 31 4ch Pre-amplifier setup and test 8/14 - 17 Data taking with Cosmic ray trigger, about 1/min

(days since purification/circulation)

Evacuation Curve(2009.4.24 - 4.27 - 4.30)

Vacuum Build Up Test

"Less than 1 Pa overnight", Douke's Golden rule -> 10Pa for us

Vacuum Build Up Test (2)

Estimation of gas emission rate (Q) : Q = a VFirst : $t = 2.4 \times 10^5 s$ Second : $t = 3.4 \times 10^5 s$ Third : $t = 4.9 \times 10^5 s$

SUS vacuum chamber : $102mm\phi$, 490mm length , 4ℓ , inner surface of $0.17m^2$

Assuming total volume V=10L and Q=a x10 [L Pa/s],

Gas emission rate at the third test is estimated to be $Q = 1.4 \times 10^{-3} L Pa/s$

Scintillation Lights Pulse Height (m V

Purification process by scintillation lights in 2 weeks

α events

(1) Pulse height

2010年 3月 9日 火曜日

pad1

10³E

10

10

0

pad3

10³

 10^{2}

10

0

500

Cosmic rays

(2) Pulse height

ch 1

ch 3

ch 4

ch 3

ch 4

3

DEMONSTRATION OF TRACKING BY USING COSMIC RAY MUON (CRM)

Analysis of the 4 pad signals

- Ch 1 and 2 are good, while Ch 3 and 4 are noisy .
- Cosmic ray muons produce larger signals of > 20fC .
- Attenuation of charge is small for the 1cm drift-gap .
 - It is about 20% in average for them.
- Zenith angular distribution
 - To show the global characteristics, i.e. compare with $\cos^2\theta$
 - classify events into following 3 patterns

Y. Fujii, JPS fall meeting, Kohnann univ., 9 Oct. 2009

ZENITH ANGULAR DISTRIBUTION OF CRM

• Results

- Sum of charges > 20fC
- Cosmic ray muons have the zenith angular distribution as a function of $\cos^2 \theta$
 - Red histogram shows the distribution with cos² θ (Monte Carlo), where the azimuthal angles are integrated.
- Consistent distribution was obtained.

Y. Fujii, JPS fall meeting, Kohnann univ., 9 Oct. 2009

Front-end ASIC chip R&D

Pre-amp. to PZC to shaper - output all analog channels

↑	Achieved	SPECIFICATI	PARAMETER
		3mm x 3mr	chip size
		8	channel number
ε		±2.5V	power supplies
3m		<10mW/ch	dissipation power
	.0±0.5V/pC	8.2V/pC	gain
	-60~100fC	±25fC	Input charge
Ļ	peaking time 0.5, 1us, variable(>1us)		
		0.5um CMC	prod. process
1pF)	-) 400e (C _d =	2,000e (Cd=1	ENC

Inputs (8ch)

T. Higashi, JPS fall meeting, Kohnann univ., 9 Oct. 2009

Test results : Linearity

IN

Cd

Input charge Qin(fC)

Since σ of V (out) is about 1mV ; $\sigma = 1mV/(6.4mV*Qin)$

 σ = 0.16/Qin[fC]

In Qin of $-8 \sim 8 \text{ fC}$,

Non-linearity is less than 0.8%.

T. Higashi, JPS fall meeting, Kohnann univ., 9 Oct. 2009

 \mathbf{N}

Equivalent Noise Charge (ENC) in room temp

T. Higashi, JPS fall meeting, Kohnann univ., 9 Oct. 2009

1 Feb.2010

Next run : 5cm drift with grid(mesh) &16 pad readout

Conclusions

1. Charge signals of both cosmic ray and α sources were detected with a commercial pre-amplifier. 2. Purification process was monitored and understood by scintillation light and charge signals. The preliminary estimation is about 90 ppb (O₂ equiv.) with circulation in 2 months, which will be improved in next time. 3. Next, we will measure 16ch-pads with 5cm drift in TPC.

TXePET prototype image

