Detector Performances on Warm/Cold Machine Y.Sugimoto with K.Fujii, Y.Fujii, T.Matsuda, A.Miyamoto

Introduction

- Some of the ITRP members want information on the detector issues at Warm/Cold Machine
- Someone says "The information might not be so important for the technology choice", but he can say so because he knows that.
- It is our duty to give them the information, if they require it. Wise persons have sense of responsibility, and will not make decision without knowledge.
- We discussed on the cases of Vertex Detector, Central Tracker, and Calorimeter. Our conclusions was privately sent to a ITRP member in response to his request. It was also sent to SLAC via Toge-san.

Vertex Detector

Design Criteria: $\sigma_{\rm b} = 5 \text{ Å} 10/(p\beta \sin^{3/2}\theta) \mu m$ Requirement for the detector • $\sigma_{\rm x} < 3\mu m$ • $t < 0.1\% X_0$ (Si:100µm) ■ Radiation tolerance for R=10~15mm Readout Speed: 6.7ms for GLC / 50µs for TESLA Possible Technology for Cold Machine: Column Parallel Readout Digital CMOS Analog buffered CMOS

Vertex Detector (Cont.)

Other Problem in Cold Machine

- RF pickup noise
 - Happened at SLD
 - 100ns(?) loss to wait for the damp for every 330ns bunch interval
- Signal diffusion in the epitaxial layer of CCD/CMOS
 - Key of excellent spatial resolution
 - Takes ~100ns
- → Still more high speed readout necessary

Vertex Detector (Cont.)

Score:

 5: Demonstrated, 4: Will be demonstrated in 2~3 years, 3: Need large R&D effort, 2: Quite difficult, 1: Almost hopeless

	σχ	Thickness	Speed (Warm)	Speed (Cold)
	(<3µm)	(<100µm)	(6ms)	(50µs)
CCD	5	4	4	1
CP-CCD	5	4 🔨	4	3
CP-CMOS	5	4	-4	3
Digital CMOS	5	4	4	3
Analog-buffered CMOS	4	4	4	3
Hybrid Active Pixel	3	2	5	5

Central Tracker

	Time stamping	Bunch ID		Space charge effect	
	capability	Warm	Cold	Warm	Cold
TPC	2~3 ns ⁽¹⁾	(1) / (2)		(4)	(4)
CDC	2 ns	/ (3)			×

With z-measurement external detector
With z- and t-measurement external detector
With t-measurement external detector
Need gating grid

Central Tracker (Cont.)

 External z-measurement (Si IT) is mandatory for TPC at Warm machine
Effect of t-measurement device (Sci-Fi with Si-DM) and a simulation study.

PM) needs simulation study

Calorimeter

 Bunch ID in every fine-segmented cell is preferable ----Machine/Det-option dependent

- Cold Machine: No problem
- Warm Machine:
 - W-Si: Poor bunch ID capability. Combination with high speed device
 - Pb-Sci: Analog signal → ADC and TAC/ADC Two successive hits in 100ns on the same cell cannot be separated

Separation of event overlap is not studied well

Simulation effort is necessary

Conclusion

(Not sent to the ITRP member)

	Warm	Cold	
Vertex Detector	10	7	
Central Tracker	9	10	
Calorimeter	9	10	
Others	?	?	
Total	?	3	

More study (Simulation + Det. R&D) is necessary