Optimal Converter Thickness Rod Targets

Eugene Bulyak

Thanks to: V.Lapko, N.Shulga, P.Gladkikh, J.Urakawa, T.Omori, A.Variola

(ロ) (同) (三) (三) (三) (○) (○)

Outline

 Analytical estimations of optimal thickness of the gammas-to-positrons conversion target

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Proposal and estimations of a rod target

Optimal thickness and yield

Analytic estimations

Model:

- Each gamma produces κ pairs per radiation length (r.l.)
- λ positrons lost on the pass length of 1 r.l.
 - linear (ionization) losses are supposed

Maximal yield of positrons at the rear face of target (per the gamma)

$$N_{\max} = 1 - rac{\lambda}{\kappa} \log\left(1 + rac{\kappa}{\lambda}
ight)$$
 of $N_{\max}^{(ext{tot})} = rac{\kappa}{\kappa + \lambda}$

Optimal thickness of target [r.l.] reads

$$L_m = \frac{1}{\kappa} \log\left(\frac{\kappa + \lambda}{\lambda}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Optimal thickness and yield

Calculations

Table: Maximal yields of positrons from the titanium and the tungsten targets at optimal thickness

Mat	$E_{\rm max}$, MeV	κ	λ	L _m	$N_{\rm max}^{\rm (tot)}$	N _{max}
	10	1/4	3.78	0.26	0.06	0.03
Ti	20	1/3	1.79	0.51	0.16	0.08
	30	1/3	1.17	0.75	0.22	0.12
	58	1/2	0.60	1.22	0.45	0.17
	10	1/4	1.42	0.65	0.15	0.08
W	20	1/3	0.67	1.21	0.33	0.19
	30	1/3	0.44	1.69	0.43	0.26
	58	1/2	0.22	2.34	0.69	0.47

Rod Converting Target

Rod target was proposed by Lapko and Shulga, 2006

- Path length of positrons much shorter than of gammas
 - increases yield of positrons
 - reduces emittance of positron beam
 - decreases target heat load (losses)
- Obstacles:
 - ► 1.3 GeV, 40 m CP-to-target distance → R_{spot} = 16 mm
 - ▶ spot radius 16 mm \approx 5 × 3.3 mm 5 rad.length of tungsten

Sliced Rod Converter

Allows to construct a long rod with shorter positrons path length

Losses decreased by a factor

$$\zeta = \frac{1}{2} \left(\frac{3\alpha_f}{\pi}\right)^{1/3} \left(\frac{\gamma R L_{\rm r.l.}}{I_{\rm rod}}\right)^{2/3}$$

where

R the disk radius,

I_{rod} the rod height,

 $L_{r.1.}$ the rod height [rad.length].

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(Method of [Rossi] was used)

Estimations for tungsten, 30 MeV

- the length of "rod" 80 cm
- the radius of rod 15 mm
- (r.l. $3.3 \,\mathrm{mm} = 20 \times 165 \,\mu\mathrm{m}$)

Table: Yields of positrons from the tungsten targets

Туре	height [r.l.]	N ^(tot)	Nyield
Solid	0.4	0.125	0.114
Solid	1	0.28	0.22
Solid	1.69	0.43	0.255
Solid	2	0.49	0.248
Rod 80 cm	0.4	0.125	0.124
Rod 80 cm	1	0.28	0.279
Rod 80 cm	1.69	0.43	0.41
Rod 80 cm	2	0.49	0.42
Undul (Ti, 10 MeV)	0.4	0.095	0.022

Sliced Rod Converter + Magnetic Field

Strong Longitudinal Field – Radius of Gyration \ll Rod's Radius

Specifics:

- Number of disk crossings controlled by the field strength and pattern
- Focusing: emittance increases 2 times slower
- The positron beam can be focused afterwards

Drawbacks

 needed the field of 4...7 Tesla

(superconducting solenoid)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Heat Load in Rod Target

Insulated Solid Target

- Heat deposits into target due to ionization losses from electron-positron pairs,
- Rod target insulated no heat conductance and thus diffusion,
- The 0.4 r.l. target got deposited of 40 J/g per pulse (200 ms) which increases of tungsten target temperature by 300 C.

(ロ) (同) (三) (三) (三) (○) (○)

Summary and Outlook

- Optimal Compton target can be thicker and more effective
- Target should be replaced 5 times per second
- Rod-target scheme enhances yield and decreases heat load
- Modified rod-target scheme enhances yield and emittance

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 Further optimization should include both the target and capturing section

Appendix: Efficiency vs. Polarization

ERL Model, Simulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?