stacking simulations for e+ Compton source - update 1

Frank Zimmermann

Thanks to: Alessandro Vivoli, Tsunehiko Omori, Robert Chehab, Vitaly Yakimenko

10 March 2008

last meeting (ILC case):

76% of injected e+ are lost! for a single cycle: 35% loss

addressing the comment by Vitaly

final ilc vertical normalized emittance is 0.017 micron rad; initial rms emittance is 6 mm rad; minimum store time follows from $0.017*exp(2 t/t_damp)$ micron rad=6000 micron rad \rightarrow store time = 6.4 transverse damping time how could we improve the situation? remedies:

□ smaller momentum compaction factor

□ reduced synchrotron tune

Iarger interval between cycles (but already too short for complete vertical

damping – Vitaly Yakimenko)

I am now trying

- - -

✓ energy pre-compression [x3] (R. Chehab)

✓ additional DR wigglers for faster damping [x2]

✓ larger rf voltage [x 1.5]

2	ILC-DR	ILC 2008 –	pre-DR for CLIC	pre-DR for CLIC
	Snowmass	Compton	(NLC 2004 design)	with higher Vrf
	'05 proposal	version		
beam energy	5 GeV	5 GeV	1.98 GeV	1.98 GeV
circumference	3223 m	6695 m	230.93	230.93
particles per extracted bunch	2.4×10^{10}	2.0×10^{10}	4.0x10 ⁹	4.0×10^9
rf frequency	650 MHz	650 MHz	2 GHz	2 GHz
harmonic number	6983	14516	1540	1540
no. trains stored in the ring	10 (10/pulse)	52.5	4 (1/pulse)	4 (1/pulse)
		(52.5/pulse)		
#bunches/train	280	50	312	312
bunch spacing	4.202 ns	6.15 ns	0.5 ns	0.5 ns
gap between trains	80 (336 ns)	~50 ns	73 (36.5 ns)	73 (36.5 ns)
#e+ / injection	2.4×10^{8}	6.65x10 ⁷	6.65x10 ⁷	6.65x10 ⁷
#turns between injections in 1 bucket	1	2	40	40
injections/bucket per cycle	10	30	3	6
injection frequency	~240 MHz	80 MHz	~50 MHz	~50 MHz
full cycle length	200 ms	200 ms	80 ms	80 ms
time between injection periods	10 ms	10 ms	1.9 ms	3.8 ms
#turns between cycles	930	450	2470	4935
length of one injection period	0.107 ms	0.963 ms	0.046 ms	0.092 ms
TI=total # injections/bucket	100	300	60	60
ST=store time after last injection	110 ms	110 ms	42 ms	42 ms
IP=time interval with injection periods	90 ms	90 ms	38 ms	38 ms
energy loss/turn	5.5 MeV	8.7x2 MeV	0.803 MeV	0.803 MeV
longitudinal damping time τ_{\parallel}	10 ms	6.4 ms	2 ms	2 ms

	ILC-DR	ILC 2008-	pre-DR for CLIC	pre-DR for CLIC
	Snowmass	Compton	(NLC 2004 design)	with higher Vrf
	'05 proposal	version		
				0.0(0.1
transv. normalized edge emittance at	0.05 rad-m	0.063 rad-m	0.063 rad-m	0.063 rad-m
injection (10x rms)				
transv. normalized dynamic aperture	>>0.05 rad-	0.4 rad-m	0.2 rad-m	0.2 rad-m?
(Ax+Ay)gamma	m?			
rms bunch length at injection	3 mm	11.4 mm	3.8 mm	3.8 mm
rms energy spread at injection	0.14%	0.04%	0.28%	0.28%
final rms bunch length	6 mm	5.2 mm	5.12 mm	1.62 mm
final rms energy spread	0.14%	0.091 %	0.089%	0.089%
longit. "edge" emittance at inj.	0.7 meV-s	0.72 meV-s	0.72 meV-s	0.72 meV-s
rf voltage	20 MV	36 MV	1.72 MV	17.2 MV
momentum compaction	3x10-4	4.2x10 ⁻⁴	1.69x10 ⁻³	1.69x10 ⁻³
2 nd order momentum compaction	1.3x10 ⁻³	-	-	-
synchrotron tune	0.0356	0.084	0.0188	0.0596
bucket area	292 meV-s	129 meV-s	10 meV-s	61 meV-s
ICM=bucket area / long. edge emit. $/\pi$	133	57	4	30
RMIN=TI/ICM	0.75	5	15	2
$IP/RMIN/\tau_{\parallel}$	12	2.8	1.3	9.5
$IP/RACT/\tau_{\parallel}$	0.78	1.56	0.95	1.9
synchronous phase	15.58°	28.97 °	26.47°	2.55°
separatrix phases 1&2	164.42 °, -	151.03 °, -82.64 °	153.53°, -95.66°	177.45°,
	159.19 °			-140.11 °
max. momentum acceptance	+/-2.7%	+/- 1.6%	+/- 1.0%	+/- 4.4%

last meeting:

76% of injected e+ are lost! for a single cycle: 35% loss

this meeting:

only 10.6% of injected e+ are lost! loss fraction for single cycle similar questions & comments

• there probably was a previous design of ILC or TESLA damping ring where the damping for e+ was twice stronger than for e-

- 2x3 km ring is option from Andy Wolski; it could reduce the damping times by factor 2, if we do not reduce the length of the wigglers
- ring parameters can be considered somewhat flexible; at present parameters are optimized for the undulator based source
- can we reduce initial energy spread to 2 MeV rms?
- option of pre-damping ring for ILC?