A Capture Section scheme for the ILC Positron Source (Alternative Solution)

> by A. Vivoli

Positron Source

Scheme of the Capture Section (up to 150 MeV)

New Cavity (1.3 GHz, SW, 100 KW CW)

Capture Section (+ CHICANE)

Electric field

Bunch Compressor

Polarization (61.5%)

Results I

Туре	Yield					σ_{E}			$\sigma_{ heta x}$	
	₩7γ %	π mm mrad	π mm mrad						mrad	mrad
1.3 / 5	0.36	15	17	1.53	1.67	3.55	2.06	0.86	2.7	2.2
1.3 / 5 B. C. (0.3X0)	0.40	16	15	2.64	0.28	9.99	0.68	0.94	3.4	1.7
1.3 / 5 B. C. (0.4X0)	0.36	13	14	2.74	0.28	10.64	0.62	0.86	3.3	1.7
1.3 / 5 B. C. (0.5X0)	0.40	16	17	2.91	0.28	10.92	0.66	0.96	3.5	1.8
1.8 / 5	0.88	19	19	2.15	1.85	5.6	2.28	1.04	2.9	1.9
1.8 / 5 B. C. 1	0.90	17	15	3.89	0.32	12.71	0.63	0.70	2.9	2.2
1.8 / 5 B. C. 2	0.81	14	15	2.51	0.97	5.06	2.50	0.51	3.7	3.2

Results II

Туре	Ν. γ	Yield e⁺/γ	N. e+		N. e ⁺ / 4 π ε _z
		%			e ⁺ / (cm MeV)
1.3 / 5	0.67 10 ¹⁰	0.36	2.39 10 ⁷	1.53	1.13 10 ⁶
1.3 / 5 B. C. (0.3 X0)	0.67 10 ¹⁰	0.40	2.66 10 ⁷	2.64	7.24 10 ⁵
1.3 / 5 B. C. (0.4 X0)	0.67 10 ¹⁰	0.36	2.42 10 ⁷	2.74	6.43 10 ⁵
1.3 / 5 B. C. (0.5 X0)	0.67 10 ¹⁰	0.40	2.69 10 ⁷	2.91	6.81 10 ⁵
1.8 / 5	0.75 10 ¹⁰	0.88	6.65 10 ⁷	2.15	2.19 10 ⁶
1.8 / 5 B. C. 1	0.75 10 ¹⁰	0.90	6.78 10 ⁷	3.89	1.23 10 ⁶
1.8 / 5 B. C. 2	0.75 10 ¹⁰	0.81	6.08 10 ⁷	2.51	1.73 10 ⁶