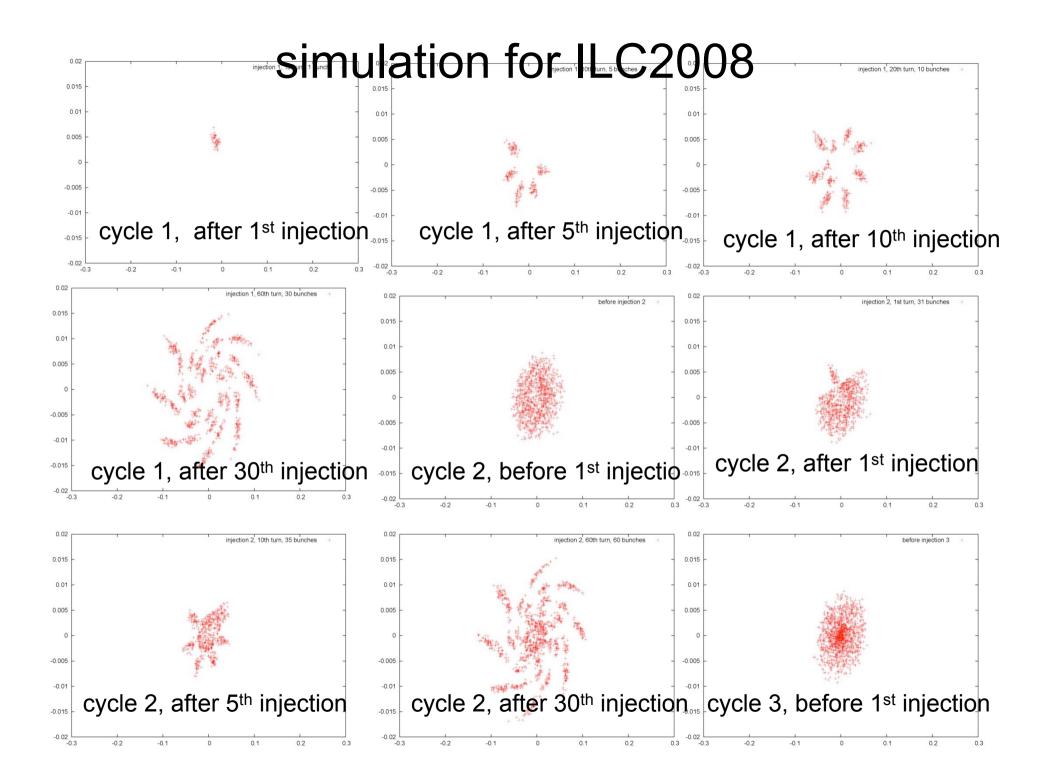
stacking simulations for e+ Compton source

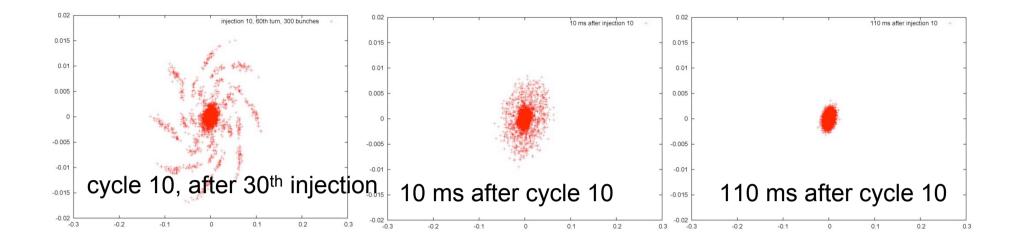
Frank Zimmermann

Thanks to: Alessandro Vivoli & Tsunehiko Omori

18 February 2008

	ILC-DR	ILC 2008	pre-DR for CLIC	pre-DR for CLIC
	Snowmass		(NLC 2004 design)	with higher Vrf
	'05 proposal			
beam energy	5 GeV	5 GeV	1.98 GeV	1.98 GeV
circumference	3223 m	6695 m	230.93	230.93
particles per extracted bunch	2.4×10^{10}	2.0×10^{10}	4.0x10 ⁹	4.0×10^9
rf frequency	650 MHz	650 MHz	2 GHz	2 GHz
harmonic number	6983	14516	1540	1540
no. trains stored in the ring	10 (10/pulse)	52.5	4 (1/pulse)	4 (1/pulse)
		(52.5/pulse)		
#bunches/train	280	50	312	312
bunch spacing	4.202 ns	6.15 ns	0.5 ns	0.5 ns
gap between trains	80 (336 ns)	~50 ns	73 (36.5 ns)	73 (36.5 ns)
#e+ / injection	2.4×10^{8}	6.65x10 ⁷	6.65x10 ⁷	6.65x10 ⁷
#turns between injections in 1 bucket	1	2	40	40
injections/bucket per cycle	10	30	3	6
injection frequency	~240 MHz	80 MHz	~50 MHz	~50 MHz
full cycle length	200 ms	200 ms	80 ms	80 ms
time between injection periods	10 ms	10 ms	1.9 ms	3.8 ms
#turns between cycles	930	450	2470	4935
length of one injection period	0.107 ms	0.963 ms	0.046 ms	0.092 ms
TI=total # injections/bucket	100	300	60	60
ST=store time after last injection	110 ms	110 ms	42 ms	42 ms
IP=time interval with injection periods	90 ms	90 ms	38 ms	38 ms
energy loss/turn	5.5 MeV	8.7 MeV	0.803 MeV	0.803 MeV
longitudinal damping time τ_{\parallel}	10 ms	12.8 ms	2 ms	2 ms


	ILC-DR	ILC 2008	pre-DR for CLIC	pre-DR for CLIC
	Snowmass		(NLC 2004 design)	with higher Vrf
	'05 proposal			
	0.05 1	0.062 1		0.0(2.1
transv. normalized edge emittance at	0.05 rad-m	0.063 rad-m	0.063 rad-m	0.063 rad-m
injection (10x rms)				
transv. normalized dynamic aperture	>>0.05 rad-	0.4 rad-m	0.2 rad-m	0.2 rad-m?
(Ax+Ay)gamma	m?			
rms bunch length at injection	3 mm	3.8 mm	3.8 mm	3.8 mm
rms energy spread at injection	0.14%	0.12%	0.28%	0.28%
final rms bunch length	6 mm	9 mm	5.12 mm	1.62 mm
final rms energy spread	0.14%	0.128%	0.089%	0.089%
longit. "edge" emittance at inj.	0.7 meV-s	0.72 meV-s	0.72 meV-s	0.72 meV-s
rf voltage	20 MV	24 MV	1.72 MV	17.2 MV
momentum compaction	3x10 ⁻⁴	4.2x10 ⁻⁴	1.69x10 ⁻³	1.69x10 ⁻³
2 nd order momentum compaction	1.3x10 ⁻³	-	-	-
synchrotron tune	0.0356	0.067	0.0188	0.0596
bucket area	292 meV-s	150 meV-s	10 meV-s	61 meV-s
ICM=bucket area / long. edge emit. $/\pi$	133	66	4	30
RMIN=TI/ICM	0.75	5	15	2
$IP/RMIN/\tau_{\parallel}$	12	1.4	1.3	9.5
IP/RACT/t	0.78	0.78	0.95	1.9
synchronous phase	15.58°	21.30°	26.47°	2.55°
separatrix phases 1&2	164.42°, -	158.70°, -124.19	153.53°, -95.66°	177.45°,
	159.19 °	0		-140.11 °
max. momentum acceptance	+/-2.7%	+/- 1.57%	+/- 1.0%	+/- 4.4%


similar assumptions as for Snowmass'05

- stacking in longitudinal phase space
- sinusoidal rf, momentum compaction, radiation damping and quantum excitation
- injection septum placed at location with large dispersion; septum blade << transverse beam size
- between successive injections orbit at the septum is varied with fast bumper magnets
- energy of injected beam is ramped such that the transverse position of the septum always corresponds to a separation of 2 $\sigma_{\delta 0}$ from beam centroid of injected beam

proposed injection scheme

- ILC 2008: inject every second turn (80 MHz ERL) into the same bucket - 30 times; then wait 10 ms (~450 turns, ~1 damping time) and repeat 9 times; total injections/bucket: 300; synchrotron phase advance between two injections: 0.134
- CLIC 2008: inject every 40th turn (50 MHz ERL) into the same bucket 6 times; then wait 3.8 ms (~4900 turns, ~2 damping times) and repeat 9 times; total injections/bucket: 60; synchrotron phase advance between two injections: 2.384

76% of injected e+ are lost! for a single cycle: 35% loss

why is it worse than in 2005?

- \succ less e+ per injected bunch \rightarrow more injections
- Iess momentum acceptance of damping ring
- Iarger damping time

possible remedies:

- □ smaller momentum compaction factor
- □ larger rf voltage
- □ reduced synchrotron tune
- Iarger interval between cycles