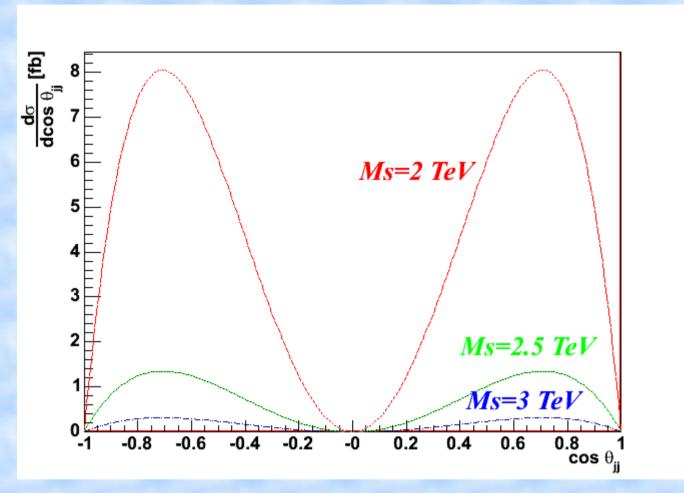
Higgs pair production at a linear e+e- collider in models with large extra dimensions hep-ex/0403029

<u>Nicolas Delerue</u> Keisuke Fujii, and Nobuchika Okada

- •Theoretical calculations
- Simulations
- Analysis
- •Results


Motivations

- Large Extra Dimensions are an alternative solution to the Gauge hierarchy problem
- Gravity with extra-dimensions would be characterized by KK graviton
- KK graviton interacts with SM very weakly but virtual KK graviton can mediate SM interactions.
- SM Higgs pair production is highly suppressed at the Linear Collider
- Clean signal with almost no SM background. Very characteristic spin 2 angular distribution.
- Channel well suited to identify KK graviton's signal GLC group Meeting 2.07.2004 Nicolas@post.kek.jp

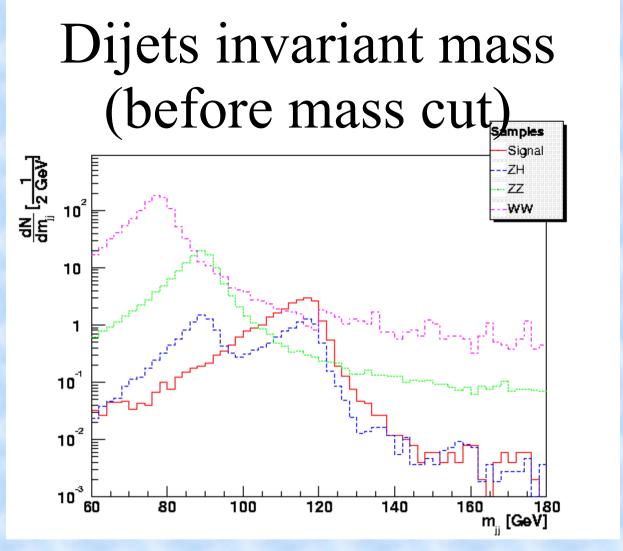
Theoretical framework

- For more details, see Okada-san's lectures at http://www-jlc.kek.jp/information/index.html (Lecture 1 more specifically)
- Key points:
 - Need to introduce an ultraviolet cutoff M_s
 - @1 TeV cross section ($e^+e^- \rightarrow HH$) = 8.6fb for $M_s = 2$ TeV. (similar to $e^+e^- \rightarrow ZH$ in the SM)
 - Angular dependence of the cross section as a function of the scattering angle is characteristic

Theoretical framework (2)

Angular dependence of the cross section as a function of the scattering angle.

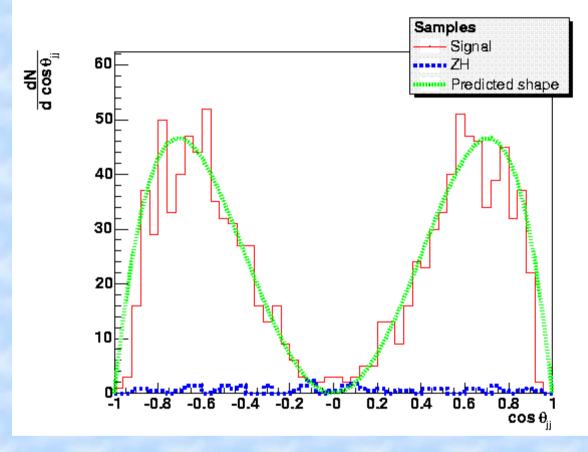
Monte-Carlo simulations


- The cross section formula has been used to write a Monte Carlo generator
- Use JSF's Hadronizer based on Pythia 6
- JSF quick simulator was then used.
- Signal's signature: 2 pairs of b-jets with Mass close from the Higgs.
- Background: WW, ZZ and ZH
- cm=1 TeV, Higgs Mass=120 GeV, M_s = 2 TeV

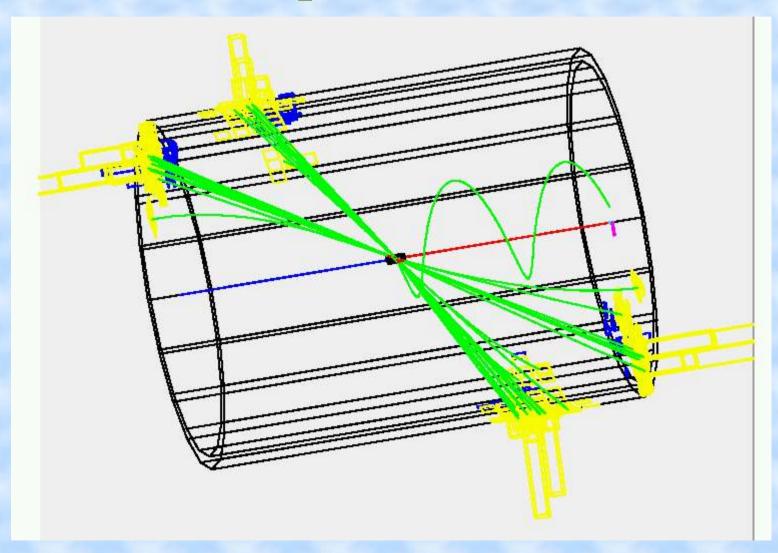
Events selection

Selection criteria	Signal	ZZ	ZH	WW
No cut	5.772 (10000)	206.666 (150000)	18.395 (20000)	3833.3 (60000)
$N_{ m tracks} > 25$	5.674 (9831)	164.330 (119272)	18.202 (19790)	2427.1 (37990)
$E_{\rm vis} > 600 {\rm GeV}$	5.471 (9479)	90.8559 (65944)	11.287 (12272)	1203.8 (18842)
$P_t \leq 50 \text{ GeV}$	3.662 (6345)	79.9122 (58001)	8.9160 (9694)	939.61 (14707)
$N_{\rm iets} \ge 4$ at $y_{\rm cut} = 0.004$	3.481 (6031)	69.682 (50576)	8.6308 (9384)	644.89 (10094)
$ m_{ij} - m_H \le 16 \text{ GeV}$	2.234 (3870)	0.136 (99)	0.174 (190)	0.319(5)
b-tagging	1.313 (2275)	0.006(4)	0.038 (41)	0.0 (0)

- After selection cuts, almost no background is left
- 1.3 events/fb⁻¹ (0.04 background)
- Possible to see the characteristic distribution with 500fb⁻¹


GLC group Meeting 2.07.2004

After mass cut almost all background removed (very unlikely to have 2 dijets near the Higgs mass in a single event)


GLC group Meeting 2.07.2004

Cos theta distribution (500 fb⁻¹)

Spin 2 of the KK graviton can easily be verified

Example of event

GLC group Meeting 2.07.2004

Nicolas@post.kek.jp

Paper's conclusion

- @1TeV ZH and HH via KK graviton have cross sections of the same order, but HH has a characteristic signal distribution.
- Possible to obtain a very clean sample with 500fb⁻¹
- But ZH, ZZ and WW can also be mediated by KK graviton => Another paper is in progress
- Submitted to PRD, rapid communictions

Referee's comments

- Sensitivity as a function of the Higgs mass should be discussed. (in progress)
- 4b background is missing.

 Cross section has been estimated with grc4f and is 3.7 fb, thus after invariant mass cut the number of remaining events should be negligible.
- Surprised by the distribution of the dijet invariant mass.
 - 2D plot available to justify the distribution
- Cross section of SM background modified Other paper in progress...

GLC group Meeting 2.07.2004