R&D Plan in FY2003

Vertex Detector Subgroup

Y. Sugimoto

11 Apr. 2003

Activity in FY2002

- Development of CPCI ADC
 - Design has been completed
 - Modules will delivered in this summer
- Radiation Damage Study
 - High energy (150MeV) electron irradiation at Tohoku Univ.
 - Sr-90 irradiation at KEK
 - 6x10¹⁰ /cm² electrons irradiated in both cases
 - 150MeV electrons have x3 (not x10) larger effect

Activity Plan in FY2003

- CCD Radiation Damage Study
- Development of CPCI ADC
- Study of Thin CCD Wafer
- Study of Diffusion in Epitaxial Layer
- Simulation

CCD Radiation Damage Study

- Irradiation of HE electrons
 - 1 shift x 4 machine times (up to $10^{12}/\text{cm}^2$)
 - More accurate and reliable dose monitor
- Irradiation of Sr-90 β
 - Same dose as HE electron irradiation
 - Reliable comparison with HE irradiation

CCD Radiation Damage Study (Cont.)

- Study of characteristics of irradiated CCDs
 - I_d vs. Temp
 - Flat-band Voltage Shift
 - □ CTI vs. Temp
 - CTI vs. Readout frequency
 - CTI vs. Fat-zero charge
 - CTI vs. clock pulse width/height
 - \blacksquare σ_{x} vs. dose
 - E-dependence of items listed above
 - Annealing/anti-annealing

Development of CPCI ADC

- Get CPCI ADC Modules from company
 - Planned in August
- CCD Timing Circuit
 - Use FPGA
 - Generate drive pulses for CCD (TTL) and clock pulses for CPCI ADC (LVDS)
- Construction of CPCI DAQ system

CPCI DAQ System

Study of Thin CCD Wafer

Motivation

- CCDs have $\sim 20 \mu m$ thick sensitive region
- Should be thinned to ~20µm if mechanical strength is ensured

Sample Wafers

- Picture frame type ---- No good
- Honeycomb/SHOJI type will be studied
 - Strength calculation with ANSIS
 - If OK, make sample wafers

Sample Wafer

Honeycomb Type

Shouji Type

Average thickness

 $=76\mu\mathrm{m}$

= 100µm (includeing edge)

Study of Diffusion in Epi-Layer

- Diffusion of electrons in Epi. Layer
 - Key of excellent spatial resolution for CCD & CMOS pixel sensors
 - Takes time to diffuse
 - \blacksquare d = sqrt(Dt)
 - $d \sim 6 \mu m @ t = 10 ns$
 - ⇒ May not work at TESLA
- Measure charge spread as a function of time

Simulation

- Simulation studies concerning Vertex det.
 - Background study using Full Simulator (JIM, JUPITER) -
 - Sugimoto, Aso
 - Physics study using Quick Simulator -- G.B. Yu
 - Physics and Detector study using Full Simulator

Future dream in FY2004~

- Custom made CCDs with
 - > 20MHz readout speed
 - Multiple readout nodes
 - Notch structure
 - Charge injection capability
 - Readout by ASIC with multi-channel CDSs, Amplifiers, ADCs, and a Multiplexer
- Things to do in 2003
 - Technical design of the prototype CCD (with HPK)
 - Try to get ¥ -- Japan-US, KAKENHI, etc.