
BABAR C++ Course 1 Paul F. Kunz

ESTABLISHED
1962 BABAR C++ Course

Paul F. Kunz

Stanford Linear Accelerator Center

No prior knowledge of C assumed

I’m not an expert in C++

Will try to do the dull stuff quickly , then move into
OOP and OO design

You need to practice to really learn C++

First two sessions is about the same for C, C++,
Objective-C and Java

BABAR C++ Course 2 Paul F. Kunz

ESTABLISHED
1962 Preliminaries

Recommended text book:

• John J. Barton and Lee R. Nackman
Scientific and Engineering C++
Addison-Wesley
IBSN: 0-201-53393-6

• http://www.research.ibm.com/xw-
SoftwareTechnology-books-SciEng-
AboutSciEng.html

Access to source code examples

• use WWW browser to text book home page

• copy from /usr/local/doc/C++Class/SciEng/

Create a.out executable with

• for AIX: xlC file.C

• for gcc: g++ file.C -lm

• for others: ?

Type a.out to run.

Some code requires exceptions feature

BABAR C++ Course 3 Paul F. Kunz

ESTABLISHED
1962 Comments

Two forms of comments allowed (ch2/comments.C)

• Tradition C style

• New C++ style (also Objective-C)

/* This is a comment */

/*
* This is a multiline
* comment
*/

a = /* ugly comment */ b + c;

// This is a comment

//
// This is a multiline
// comment
//

a = b + c; // comment after an expression

BABAR C++ Course 4 Paul F. Kunz

ESTABLISHED
1962 Main program

All programs must have a main

Most trivial is (ch2/trivial.C)

• under UNIX, suff ix is .C or . cc

• under Windows, suff ix is .cpp

• main() is a function called by the OS

• this main() takes no arguments

• braces (“{ ” and “} ”) denote body of function

• main returns 0 to the OS (success!)

• a statement ends with semi-colon (“; ”), otherwise
completely free form

• same rules as C (except .c suffix is used)

int main() {
 return 0;
}

BABAR C++ Course 5 Paul F. Kunz

ESTABLISHED
1962 C++ Input and Output

Introduce I/O early, so we can run programs from
shell and see something happen :-)

Example (ch2/regurgiate.C)

• iostream.h is header file containing declarations
needed to use C++ I/O system

• a, b, and c are floating point variables (like REAL*4)

• cin >> reads from stdin, i.e. the keyboard

• cout << prints to stdout, i.e. the screen

• endl is special variable: the end-of-line (‘\n’ in C)
Unlike Fortran, you control the end-of-line.

#include <iostream.h> // preprocessor command

int main() {
 // Read and print three floating point numbers
 float a, b, c;
 cin >> a >> b >> c; // input
// output

 cout << a << ", " << b << ", " << c << endl;

 return 0;
}

BABAR C++ Course 6 Paul F. Kunz

ESTABLISHED
1962 More on I/O

Controlling end-of-line has its advantages

Example (ch2/intercepts.C)

• an expression can be input to cout <<

• we print the result of the expression, or “none” on
same line las label.

 // Print the equation coefficients of a*x + b*y + c = 0
 cout << "Coefficients: " << a << ", " << b << ", " << c << endl;

 // Compute and print the x-intercept.
 cout << "x-intercept: ";
 if (a != 0) {
 cout << -c / a << ", "; // a not equal to 0
 }
 else {
 cout << "none, "; // a is equal to 0
 }

BABAR C++ Course 7 Paul F. Kunz

ESTABLISHED
1962 math.h

Unlik e Fortran, ther e are no intrinsic functions

But there are standard libraries

One must include header file to make library
functions available at compile time

Example (ch2/cosang.C)

• functions can be input to cout <<

• see /usr/include/math.h to get list of functions

• useful constants are defined as well

• C shares same library

// Read an angle in degrees and print its cosine.
#include <iostream.h>
#include <math.h>

int main() {

 float angle; // Angle, in degrees
 cin >> angle;
 cout << cos(angle * M_PI / 180.0) << endl;
 // M_PI is from <math.h>
 return 0;
}

BABAR C++ Course 8 Paul F. Kunz

ESTABLISHED
1962 Variables, Objects, and Types

Consider (ch2/simple.f)

• we have three objects with initial value

Consider (simple.f) S()

• we have still only three objects, but,

• thus X gets changed by S() in calling routine

• we say: Fortran passes by reference

 INTEGER I
 REAL X
 DATA I/3/, X/10.0/

CALL S(X, 4.2)

I: X:
REAL
4.2

REAL
10.0

INTEGER
3

 SUBROUTINE S(A, B)
 REAL A, B
 A = B
 END

I:
X:
A:

REAL
4.2

B:REAL
10.0

INTEGER
3

BABAR C++ Course 9 Paul F. Kunz

ESTABLISHED
1962 Declaring types and initializing

Consider (ch2/simplecpp.C)

• variable names must start with a letter or “_”, and are
case sensitive

• initialization can occur on same line

• multiple declarations are allowed

• type declaration is mandatory
(like having IMPLICIT NONE in every file)

• for all of the above, same rules in C

• type declaration must be before first use, but does not
have to be before first executable statement

• general practice is to make type declaration just
before first use

int i = 3;
float x = 10.0;

int i = 3;
float x = 10.0;
i = i + 1;
int j = i;

BABAR C++ Course 10 Paul F. Kunz

ESTABLISHED
1962 Types

Both Fortran and C/C++ have types

• defines the meaning of bits in memory

• defines which machine instructions to generate on
certain operations

• limits.h gives you the valid range of integer types

• float.h gives you the valid range, precision, etc. of
floating point types

• not all compilers support bool type yet

• as with Fortran, watch out on PCs or 64 bit machines

Fortran C++ or C

LOGICAL bool (C++ only)

CHARACTER*1 char

INTEGER*2 short

INTEGER*4 int long

REAL*4 float

REAL*8 double

COMPLEX

BABAR C++ Course 11 Paul F. Kunz

ESTABLISHED
1962 Arithmetic Operators

Both Fortran and C/C++ have operators

• x++ is equivalent to x = x + 1

• x++ means current value, then increment it

• ++x means increment it, then use it.

• sorry, can’t do x**2; use x*x instead
(for sub-expressions like (x+y)**2, we’ll see some
tricks later)

Fortran Purpose C or C++

X + Y add x + y

X - Y subtract x - y

X*Y multiply x*y

X/Y divide x/y

MOD(X,Y) modulus x%y

X**Y exponentiations pow(x,y)

+X unary plus +x

-Y unary minus -y

postincrement x++

preincrement ++x

postdecrement x--

predecrement --x

BABAR C++ Course 12 Paul F. Kunz

ESTABLISHED
1962 Exercise

What is the output of (ch2/prepostfix.C)

Should be

Try changing ++ to --

#include <iostream.h>
int main() {

int i = 1;
cout << i << ", ";
cout << (++i) << ", ";
cout << i << ", ";
cout << (i++) << ", ";
cout << i << endl;

return 0;
}

1, 2, 2, 2, 3

BABAR C++ Course 13 Paul F. Kunz

ESTABLISHED
1962 Relational Operators

Both Fortran and C/C++ define relational operators

• zero is false and non-zero is true

Fortran Purpose C or C++

X .LT. Y less than x < y

X .LE. Y less than or equal x <= y

X .GT. Y greater than x > y

X .GE. Y greater than or equal x >= y

X .EQ. Y equal x == y

X .NE. Y not equal x != y

BABAR C++ Course 14 Paul F. Kunz

ESTABLISHED
1962 Logical operators and Values

Both Fortran and C/C++ have logical operations and
values

• && and || evaluate from left to right and right hand
expression not evaluated if it doesn’t need to be

• the following never divides by zero

• if bool type is supported, the true and false exists
as constants.

• else can do

Fortran Purpose C or C++

.FALSE. false value 0

.TRUE. true value non-zero

.NOT. X logical negation !x

X .AND. Y logical and x && y

X .OR. Y logical inclusive or x || y

if (d && (x/d < 10.0)) {
// do some stuff

}

typedef char bool;
bool false = 0; bool true = 1;

BABAR C++ Course 15 Paul F. Kunz

ESTABLISHED
1962 Characters

C/C++ only has one byte characters

Constants of type char use single quotes

Use escape sequence for unprintable characters and
special cases

• ’\n’ for new line

• ’\’’ for single quote

• ’\”’ for double quotes

• ’\?’ for question mark

• ’\ddd’ for octal number

• ’\xdd’ for hexadecimal

char a = ’a’;
char aa = ’A’;

BABAR C++ Course 16 Paul F. Kunz

ESTABLISHED
1962 Bitwise Operators

Both Fortran and C/C++ have bitwise operators

• can be used on any integer type
(char, short, int, etc.)

• right shift might not do sign extension

• most often used for on-line DAQ and trigger

• also used for unpacking compressed data

Fortran Purpose C/C++

NOT(I) complement ~i

IAND(I,J) and i&j

IEOR(I,J) exclusive or i^j

IOR(I,J) inclusive or i|j

ISHFT(I,N) shift left i<<n

ISHFT(I,-N) shift right i>>n

BABAR C++ Course 17 Paul F. Kunz

ESTABLISHED
1962 Assignment operators

C/C++ has many assignment operators

• takes some time to get use to

• makes code more compact

Fortran Purpose C or C++

X = Y assignment x = y

X = X + Y add assignment x += y

X = X - Y subtract assignment x -= y

X = X*Y multiply assignment x *= y

X = X/Y divide assignment x /= y

X = MOD(X,Y) modulus assignment x %= y

X = ISHFT(X,-N) right shift assignment x >>= n

X = ISHFT(X,N) left shift assignment x <<= n

X = IAND(X,Y) and assignment x &= y

X = IOR(X,Y) or assignment x |= y

X = IEOR(X,Y) xor assignment x ^= y

BABAR C++ Course 18 Paul F. Kunz

ESTABLISHED
1962 Operator Precedence

Both Fortran and C/C++ use precedence rules to
determine order to evaluate expressions

• z = a*x + b*y + c; evaluates as you would expect

• also left to right or right to left precedence defined

• can over ride default by use of parentheses

• when in doubt, use parentheses

• make code easy to understand

• don’t make clever use of precedence

BABAR C++ Course 19 Paul F. Kunz

ESTABLISHED
1962 if Statements

C/C++ if statement is analogous to Fortran
(ch2/tempctrl.C)

Any expression that evaluates to numeric value is
allowed.

if (current_temp > maximum_safe_temp) {
 cerr << "EMERGENCY: Too hot--flushing" << endl;
 flushWithWater();
}

if (!(channel = openChannel(“temperature”))) {
 cerr << "Could not open channel" << endl;
 exit(1);
}

BABAR C++ Course 20 Paul F. Kunz

ESTABLISHED
1962 if gotchas

Braces are optional when single expression is in the
block

• leaves potential for future error

• suggest single expressions remain on same line

Any expression, including assignment

• a common mistake; this sets i = j and then does
some stuff if j is non-zero

if (x < 0)
 x = -x; // abs(x)
 y = -y; // always executed

if (x < 0) x = -x; // abs(x)

int i, j;
// some code setting i and j
if (i = j) {

// some stuff
}

BABAR C++ Course 21 Paul F. Kunz

ESTABLISHED
1962 if else Statements

Analogous to Fortran

C/C++ also has condition operator

• use only for simple expressions

• else code can become unreadable

Also have

if (x < 0) {
y = -x;

} else {
y = x;

}

y = (x < 0) ? -x : x; // y = abs(x)

if (x < 0) {
y = -x;

} else if (x > 0) {
y = x;

} else {
y = 0;

}

BABAR C++ Course 22 Paul F. Kunz

ESTABLISHED
1962 Coding Styles

C/C++ is free form

Common styles for if block are

• the first is more common

if (x < 0) {
y = -x;

} else {
y = x;

}
// or
if (x < 0)
{

y = -x;
}
else
{

y = x;
}

BABAR C++ Course 23 Paul F. Kunz

ESTABLISHED
1962 while loop

C/C++ while is when block should be executed
zero or more times

General form

• any expression that returns numeric value

• same rules as if block for braces

• Fortran equivalent requires GOTO

while (expression) {
 statement

...
}

10 IF (.NOT. expression) GOTO 20
 statement

...
GOTO 10

20 CONTINUE

BABAR C++ Course 24 Paul F. Kunz

ESTABLISHED
1962 while Example

Example (ch2/sqrtTable.C)

• reads terminal until end-of-file

• <ctrl>-d is end-of-file for UNIX

• I can not explain how this works until later

#include <iostream.h>
#include <iomanip.h>
#include <math.h>

int main() {
float x;
while (cin >> x) {

 cout << x << sqrt(x) << endl;
}
return 0;

}

BABAR C++ Course 25 Paul F. Kunz

ESTABLISHED
1962 do-while loop

C/C++ do-while is when block should be
executed one or more times

General form

• any expression that returns numeric value

• same rules as if block for braces

• Fortran equivalent requires GOTO

do {
 statement

...
} while(expression);

10 CONTINUE
 statement

...
IF(expression)GOTO 10

BABAR C++ Course 26 Paul F. Kunz

ESTABLISHED
1962 do-while Example

Snippet from use of Newton’s method
 (ch2/Newton.C)

x = initial_guess;
do {

dx = f(x) / fprime(x);
 x -= dx;
} while (fabs(dx) > desired_accuracy);

BABAR C++ Course 27 Paul F. Kunz

ESTABLISHED
1962 for loop

C/C++ for loop much more general than Fortran
DO loop

• the test expression can be any that returns numeric
value like if block

• function calls and I/O are also allowed

In Fortran

In C or C++

for(init-statement; test-expr; increment-expr) {
 statement

...
}

DO 10 I = 1, J, K
 statements

...
10 CONTINUE

for(i = 1; i <= j; i += k) {
 statements

...
}

BABAR C++ Course 28 Paul F. Kunz

ESTABLISHED
1962 More Examples

Typically, one sees

• where i is declared and typed in init-statement

Nested loops might iterate over all pairs with

Use of two running indices might be

• separate expressions with commas

for(int i = 0; i < count; i++) {
 // statements in loop body
}

for(i = 0; i < count - 1; i++) {
for(j = i+1; j < count; j++) {

 // statements in loop body
}

}

for(i = 0, j = count-1; i < count-1; i++, j--) {
// statements in loop body

}

BABAR C++ Course 29 Paul F. Kunz

ESTABLISHED
1962 break and continue Statements

Consider following Fortran

• common need to break out of loop or continue to next
iteration.

Equivalent C++ code is

• continue goes to next iteration of current loop

• break step out of current loop

• goto exists in C/C++ but rarely used

• we’ll make less use of these constructs in C++, then
in either C or Fortran

DO 100 I = 1, 100
IF (I .EQ. J) GO TO 100
IF (I .GT. J) GO TO 200

! do some work
100 CONTINUE
200 CONTINUE

for (i = 0; i < 100; i++) {
if (i == j) continue;
if (i > j) break;
// do some work

}

BABAR C++ Course 30 Paul F. Kunz

ESTABLISHED
1962 Arrays

A collection of elements of same type

• access first element of array with x[0]

• access last element of array with x[99]

Initializing array elements

• can let the compiler calculate the dimension

Multi-dimensions arrays

• elements appear row-wise

• Fortran elements appear column-wise

• Thus m[0][1] in C/C++ is M(2,1) in Fortran

• royal pain to interface C/C++ with Fortran

float x[100]; // like REAL*4 X(100) in F77

float x[3] = {1.1, 2.2, 3.3};
float y[] = {1.1, 2.2, 3.3, 4.4};

float m[4][4]; // like REAL*4 M(4,4) in F77
int m [2][3] = { {1,2,3}

{4,5,6} };

BABAR C++ Course 31 Paul F. Kunz

ESTABLISHED
1962 Example Code and a Test

Multiplying matrices (ch2/mat3by3.C)

• If you understand this code, then you know enough
C/C++ to code the algorithmic part of your code

• At the beginning of this session, the above code
would probably have been gibberish

• If you can not understand this code, then I’m going
too fast :-(

float m[3][3], m1[3][3], m2[3][3];
// Code that initializes m1 and m2 ...

// m = m1 * m2
double sum;
for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 3; j++) {

sum = 0.0;
 for (int k = 0; k < 3; k++) {
 sum += m1[i][k] * m2[k][j];
 }
 m[i][j] = sum;
 }
}

BABAR C++ Course 32 Paul F. Kunz

ESTABLISHED
1962 A Pause for Reflection

What have we learned so far?

• we’ve seen how to do in C/C++ everything you can do
in Fortran 77 except functions, COMMON blocks, and
character arrays.

• some aspects of C/C++ are more convenient than
Fortran; some are not

• but we’ve seen nothing fundamentally new, things
are just different

Next session, we start with some new stuff and we’re
not even finished with chapter 2!

In particular , the replacement for COMMON blocks is
going to be quite different

BABAR C++ Course 33 Paul F. Kunz

ESTABLISHED
1962 Plan of the day

Functions

Pointers

More on functions

BABAR C++ Course 34 Paul F. Kunz

ESTABLISHED
1962 Functions

Example function (ch2/coulombsLaw-onefile.C)

• first token is type of returned object

• second token is function name

• argument names are proceeded by their type

• function body is within {}

• return statement can be expression or variable

• if keyword void is used as return type, then
function is like Fortran SUBROUTINE

• if no arguments, void can be used or leave empty

double coulombsLaw(double q1, double q2, double r) {
// Coulomb's law for the force acting on two point charges
// q1 and q2 at a distance r. MKS units are used.

double k = 8.9875e9; // nt-m**2/coul**2
 return k * q1 * q2 / (r * r);

}
int main() {
 cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)

<< " newtons" << endl;
 return 0;
}

BABAR C++ Course 35 Paul F. Kunz

ESTABLISHED
1962 Function Prototypes

Will this work?

• C++ checks types and number of arguments

• does standard type conversions if necessary

• C++ checks return type

• can be compilation error if checks fail or type
conversion is not possible

Will this work?

• extern keyword says that the function is external
and needs to be included in the link step

• statement ends with ; where body would have been

int main() {
 cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)

<< " newtons" << endl;
 return 0;
}

extern double coulombsLaw(double q1, double q2, double r);
int main() {
 cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)

<< " newtons" << endl;
 return 0;
}

BABAR C++ Course 36 Paul F. Kunz

ESTABLISHED
1962 Declarations and Definitions

On the one hand, programs must be broken up into
units which are compiled separately

• standard functions compiled and put in libraries

• analysis code compiled and linked to library

On the other hand, functions and other externals
must be declared before their use.

• sqrt(double) and sqrt(double x) are
equivalent in the declaration statement

What would happen if declaration we used did not
correspond to function in the library?

To ensure consistency, we force the library function
and the declaration we use to share same declaration

extern double sqrt(double);

double x, y, z, r;
//
r = sqrt(x*x + y*y + z*z);

BABAR C++ Course 37 Paul F. Kunz

ESTABLISHED
1962 Header files used with definition

In math.h, we have declarations

In math.C, we have definition

• #include is like Fortran include

• declaration in header files is used in compilation of
the library function

• any mismatch between declaration and definition is
flagged as error.

extern double sqrt(double);
extern double sin(double);
extern double cos(double);
// and many more

#include <math.h>
double sqrt(double x) {
//

return result;
}
double sin(double x) {
//

return result;
}

BABAR C++ Course 38 Paul F. Kunz

ESTABLISHED
1962 Header files and user code

In math.h, we have declarations

in user.C we have definition of user code

• use same header file in user code

• user code then compiles correctly with implicit
conversions as needed

extern double sqrt(double);
extern double sin(double);
extern double cos(double);
// and many more

#include <math.h>

double x, y, z, r;
//
r = sqrt(x*x + y*y + z*z);

BABAR C++ Course 39 Paul F. Kunz

ESTABLISHED
1962 Extern Data Declarations

Data can be external

• external data is like data in Fortran COMMON block

• rarely used feature in C and even less in C++

Defining extern data

• definition must only be done once

• definition is like those in Fortran BLOCK DATA

extern double aNum;

int foo() {
 cout << aNum << endl;
 return 0;
}

double aNum = 1234.5678;

int main() {
 foo();
 return 0;
}

BABAR C++ Course 40 Paul F. Kunz

ESTABLISHED
1962 Static Functions

Static function declaration (ch5/expdef.C)

• static keyword means local in scope of file

• definition substitutes for declaration within file

• still must come before use

#include <math.h>

static double exp_random(double mu) {
return -mu * log(random());

}

void simulation1() {
double x1 = exp_random(2.1);

 // ...
}

BABAR C++ Course 41 Paul F. Kunz

ESTABLISHED
1962 Static Data

Consider

• static objects retains its value after return from
function

• behaves like Fortran local data under VM or VMS

• like Fortran local data under UNIX with SAVE option

• rarely used feature

#include <iostream.h>

int counter() {
 static int count = 0;
 count++;
 return count;
}

int main() {
 int i;
 i = counter();
 cout << i << ", ";
 i = counter();
 cout << i << endl;
 return 0;
}

BABAR C++ Course 42 Paul F. Kunz

ESTABLISHED
1962 Default Function Arguments

One can specify the value of the arguments not given
in the call to a function

Example (ch5/logof.h)

• can be used like

• all arguments to the right of the first argument with
default value must have default values

• once first default value is used, the remaining ones
must also be used

• value of the default must be visible to the caller

#include <math.h>
extern double log_of(double x, double base = M_E);

// M_E in <math.h>

#include <ch5/logof.h>

x = log_of(y); // base e
z = log_of(y, 10); // base 10

BABAR C++ Course 43 Paul F. Kunz

ESTABLISHED
1962 Functions in C

Function declaration and prototype is the same in C
except

• if header inclusion is missing in calling program,
then C compiler gives warning and takes default
argument types (long or double) and return type
(int)

• if header file is included and there is a mismatch
between arguments or return type, the C compiler
only gives warnings

• you don’t see the warnings unless you ask for them
(see man pages for their flag)

• gcc gives excellent warnings with -Wall flag

• ignoring these warnings can be a disaster on some
RISC machines

• no default arguments

BABAR C++ Course 44 Paul F. Kunz

ESTABLISHED
1962 Header Files

In a large program, it is possible that a header file
might get included twice

Use C preprocessor to avoid to double inclusion

• cpp buils tempoary f ile for compiler

• #ifndef is C preprocessor directive saying “if not
defined”

• COULOMBSLAW_H is preprocessor macro variable and
is upper case by convention

• #def ine defines a macro variable but in this case
doesn’t give it a value

• #endif ends the #ifndef

• this structure seen in all system header files

• same for C

#ifndef COULOMBSLAW_H
#define COULOMBSLAW_H
extern double coulombsLaw(double q1, double q2, double r);
#endif // COULOMBSLAW_H

BABAR C++ Course 45 Paul F. Kunz

ESTABLISHED
1962 The (dreaded) Pointers

A pointer is an object that refers to another object

Declare it thus

• either form can be used; the later is prefered

Assign a value to the pointer

• read & as “address of”

• data model is thus

Watch out!

int* p;
int *q;

int i = 3;
int *p = &i;

p: i:
int * int

3

int *p, i;
p = &i; // i is an int

BABAR C++ Course 46 Paul F. Kunz

ESTABLISHED
1962 Dereferencing pointers

Consider (ch2/ptrs.C)

• *p derefences pointer to access object pointed at

• *p can be used on either side of assignment operator

• if p is equal to 0, then pointer is pointing at nothing
and is called a null pointer.

• dereferencing a null pointer causes a core dump :-(

#include <iostream.h>

int main() {
int* p;
int j = 4;
p = &j;

cout << *p << endl;

*p = 5;
cout << *p << " " << j << endl;

if (p != 0) {
 cout << "Pointer p points at " << *p << endl;
}
return 0;
}

BABAR C++ Course 47 Paul F. Kunz

ESTABLISHED
1962 Pointers and Arrays

Consider

Our memory model is

• what does the label x mean?

• in Fortran, foo(x) is the same as foo(x(1)) is
the same

• in C/C++, x is a pointer to the first element

• *x and x[0] are the same

• x and &x[0] are the same

• elements of an array can be accessed either way

• but x is a label to an array of object, not a pointer
object

float x[5];

float *

x:

x[0] x[1] x[2] x[3] x[4]
float float float floatfloat

BABAR C++ Course 48 Paul F. Kunz

ESTABLISHED
1962 Pointer Arithmetic

A pointer can point to element of an array

• y is a pointer to x[0]

• z is also a pointer to x[0]

• y+1 is pointer to x[1]

• thus *(y+1) and x[1] access the same object

• y[1] is shorthand for *(y+1)

• integer add, subtract and relational operators are
allowed on pointers

float x[5];
float *y = &x[0];
float *z = x;

BABAR C++ Course 49 Paul F. Kunz

ESTABLISHED
1962 Examples

1. Summing an array Fortran style

2. Summing an array C++ style

• we declare sum just before we need it

• we initialize sum with the declaration

• we use i++ to indicate increment

• we use sum += to indicate accumulation

float x[5];
double sum;
int i;
// some code that fills x
sum = 0.0;
for (i = 0; i < 5; i = i + 1) {
sum = sum + x[i];

}

float x[5];
// some code that fills x
double sum = 0.0;
for (int i = 0; i < 5; i++) {
sum += x[i];

}

BABAR C++ Course 50 Paul F. Kunz

ESTABLISHED
1962 More examples

3. Summing an array with pointer in Fortran style

4. Summing an array with pointer in C++ style

• delay declaration until need

• use increment operator

• use += assignment operator

float x[5];
float *y;
double sum;
int i;
// code to fill x
sum = 0.0;
y = &x[0];
for (i = 0; i < 5; i = i + 1) {
sum = sum + *y;
y = y + 1;

}

float x[5];
// code to fill x
float *y = x;
double sum = 0.0;
for (int i = 0; i < 5; i++) {
sum += *y++;

}

BABAR C++ Course 51 Paul F. Kunz

ESTABLISHED
1962 Progression towards C++ style

Fortran style

Use add-and-assign operator

Use postfix increment operator

Combine postfix and dereference

• it takes some time to get use to writing in this style

• be prepared to read code written by others in this
style

• don’t worry about performance issues yet

sum = sum + *y;
y = y + 1;

sum += *y;
y = y + 1;

sum += *y;
y++;

sum += *y++;

BABAR C++ Course 52 Paul F. Kunz

ESTABLISHED
1962 Examples of Pointer Arithmetic

Reverse elements of an array
(ch2/array-reverse.C)

Set elements of an array to zero
(ch2/array-zero.C)

• this terse style is typical of experienced C/C++
programmers

• most HEP code will not be so terse

• in C++, we wouldn’t use pointers as much as in C

float x[10];
// ... initialize x ...
float* left = &x[0];
float* right = &x[9];
while (left < right) {
 float temp = *left;

*left++ = *right;
 *right-- = temp;
}

float x[10];

float* p = &x[10]; // uh?
while (p != x) *--p = 0.0;

BABAR C++ Course 53 Paul F. Kunz

ESTABLISHED
1962 Runtime Array Size

In C++, one can dynamically allocate arrays

• new is an operator that returns a pointer to the newly
created array

• note use of n; a variable

• not the same as Fortran’s

where the calling routine “owns” the memory

• in C, one does

In C++, to delete a dynamically allocated array one
uses the delete operator

• in C one uses the free() function

float* x = new float[n];

SUBROUTINE F(X,N)
DIMENSION X(N)

float *x = (float *)malloc(n*sizeof(float));

delete [] x;

free(x);

BABAR C++ Course 54 Paul F. Kunz

ESTABLISHED
1962 Line fit example

Part 1(ch2/linefit.C)

• note first declaration of i carries forward

• will need to change in future

#include <iostream.h>

void linefit() {
 // Create arrays with the desired number of elements
 int n;
 cin >> n;
 float* x = new float[n];
 float* y = new float[n];

 // Read the data points
 for (int i = 0; i < n; i++) {
 cin >> x[i] >> y[i];
 }

 // Accumulate sums Sx and Sy in double precision
 double sx = 0.0;
 double sy = 0.0;
 for (i = 0; i < n; i++) {
 sx += x[i];
 sy += y[i];
 }

BABAR C++ Course 55 Paul F. Kunz

ESTABLISHED
1962 Line fit continued

Part 2 (ch2/linefit.C)

// Compute coefficients
 double sx_over_n = sx / n;
 double stt = 0.0;
 double b = 0.0;
 for (i = 0; i < n; i++) {
 double ti = x[i] - sx_over_n;

 stt += ti * ti;
 b += ti * y[i];

 }
 b /= stt;
 double a = (sy - sx * b) / n;

 delete [] x;
 delete [] y;

 cout << a << " " << b << endl;
}

int main() {
 linefit();
 return 0;
}

BABAR C++ Course 56 Paul F. Kunz

ESTABLISHED
1962 Character Strings

Character strings are special case of array and
array initialization

• dimension of hello1 is 2

The above is too tedious, so use double quotes

• the dimension of hello2 is 3

• the characters are ‘H’, ‘ i’, and ‘\0’

• all string functions in C/C++ library expect the last
character to be ‘\0’

• one frequently uses pointers to walk thru a string

char hello1[] = { ’H’, ’i’ };

char hello2[] = "Hi";

char hello2[] = "Hi";
int n = 0;
for (char *p = hello2; *p !=0; p++) {

n++;
}
// n == 2

BABAR C++ Course 57 Paul F. Kunz

ESTABLISHED
1962 Variable Scope, Initialization, and

Lifetime

Consider (ch2/scope.C)

• every pair of {} defines a new scope

• even a pair with out function, if, for, etc.

• variables declared in a scope are deleted when
execution leaves scope

void f() {
 float temp = 1.1;
 int a;
 int b;
 cin >> a >> b;

 if (a < b) {
 int temp = a; // This "temp" hides other one

cout << 2 * temp << endl;
 }// Block ends; local "temp" deleted.
 else {
 int temp = b; // Another "temp" hides other one
 cout << 3 * temp << endl;
 }

 cout << a * b + temp << endl;
}

BABAR C++ Course 58 Paul F. Kunz

ESTABLISHED
1962 for-loop Scoping

Consider

• note where i is declared

• the scope of i is the scope just outside the for-loop
block

• works for today’s UNIX vendor’s compilers

Current draft standard

• scope of i is inside for-loop block

• will need to declare i before for statement for i
to have meaning after loop termination

• if declared in for statement, will need to repeat it
for each for statement that follows

• vendor compilers will (eventually) change

• gcc 2.7.x supports draft standard now

for(int i = 0; i < count; i++) {
if (a[i] < 10) break;

}
cout << i << endl;

BABAR C++ Course 59 Paul F. Kunz

ESTABLISHED
1962 Formal Arguments

Consider(ch2/funcarg.C)

• what’s the value of j after calling f()?

• C/C++ pass arguments by value, thus j and k are
left unchanged

• i, x, and a are formal arguments and in the scope
of f()

• upon calling f(), it is as if the compiler generated
this code to initialize the arguments

• thus y[0] does get set to 0.0

void f(int i, float x, float *a) {
 i = 100;

x = 101.0;
 a[0] = 0.0;
}

int j = 1;
int k = 2;
float y[] = {3.0, 4.0, 5.0};
f(j, k, y);

int i = j;
float x = k; // note type conversion
float *a = y; // init pointer to array

BABAR C++ Course 60 Paul F. Kunz

ESTABLISHED
1962 References

A way to reference the same location (C++ only)

Reference (ch/simplecpp.C)

• a and b are called a reference

• a, b, and x are all labels for the same object

• the position of the “&” is optional

• Don’t confuse a reference and a pointer

• i has an address of a memory location containing 3

• j has the same address as i

• the contents of p is the address of i

float x = 12.1;
float& a = x;
float &b = x;

int i = 3; // data object
int &j = i; // reference to i
int *p = &i; // pointer to i

p: i:int *

j:

int
3

BABAR C++ Course 61 Paul F. Kunz

ESTABLISHED
1962 Reference arguments

Consider(ch2/funcarg.C)

• swap() has reference arguments

• upon calling swap(), it is as if the compiler
generated this code to initialize its arguments

• thus i1 and i2, the variables in swap()’s scope,
are aliases for the caller’s variables.

• swap() behaves like Fortran functions

• C does not have reference; instead you have to write

void swap(int &i1, int &i2) {
int temp = i1;
i1 = i2;
i2 = temp;

}
int c = 3;
int d = 4;
swap(c, d);
// c == 4 and d == 3

int &i1 = c;
int &i2 = d;

extern void swap(int *i1, int *i2);
swap(&c, &d);

BABAR C++ Course 62 Paul F. Kunz

ESTABLISHED
1962 Homework

Given this declaration

• write the function

• show how it is called

• draw a data model showing type and value of the
arguments

void swap(int &i1, int *i2);

BABAR C++ Course 63 Paul F. Kunz

ESTABLISHED
1962 Recursion

A function can call itself (ch2/Stirling.C)

• each block (function, if, for, etc.) creates new scope

• variables are declared and initialized in a scope and
deleted when execution leaves scope

Exercise: write a function that computes factorial of
a number

int stirling(int n, int k) {
 if (n < k) return 0;
 if (k == 0 && n > 0) return 0;
 if (n == k) return 1;
 return k * stirling(n-1, k) + stirling(n-1, k-1);
}

BABAR C++ Course 64 Paul F. Kunz

ESTABLISHED
1962 More on declarations

We have seen

A const declaration

• a const variable can not be changed once it is
initialized

• get compiler error if you try.

the following is obsolete

• but maintained to be compatible with C

• it is C preprocesor macro (just string subsitution)

int i;
int j = 3;
float x = 3.14;

const float e = 2.71828;
const float pi2 = 3.1415/2;

const float pi = 3.1415;
pi = 3.0; // act of congress

#define M_PI 3.1415;

BABAR C++ Course 65 Paul F. Kunz

ESTABLISHED
1962 const Pointer

Consider

• const qualifier can refer to what is pointed at
(frequent usage)

• const qualifier can refer to pointer itself
(rare usage)

• const qualifier can refer to both
(infrequent usage)

const float pi = 3.1415;
float pdq = 1.2345;
const float *p = π
float* const d = π // WRONG
float* const q = &pdq;
const float *const r = π

*p = 3.0; // WRONG
p = &pdq; // OK
*p = 3.0; // still WRONG

*q = 3.0; // OK
q = &pdq; // WRONG

*r = 3.0; // WRONG
r = &pdq; // WRONG AGAIN

BABAR C++ Course 66 Paul F. Kunz

ESTABLISHED
1962 const function argument

Consider

• a const argument tells user of function that his data
wouldn’t be changed

• the const is enforced when attempting to compile
function.

• first aspect of spirit of client/server interface

void f(int i, float x, const float *a) {
 i = 100;

x = 101.0*a[0]; // OK
 a[0] = 0.0; // WRONG!
}

int j = 1;
int k = 2;
float y[] = {3.0, 4.0, 5.0};
f(j, k, y);

BABAR C++ Course 67 Paul F. Kunz

ESTABLISHED
1962 Function Name Overloading

Pre-Fortran 77 we had

• separate functions had different names

• today, intrinsic functions have the same name

• programmer defined functions still must have
different names

In C++, one can have

• separate functions with same name

• functions distinguished by their name, and the
number and type of arguments

• name mangling occurs to create the external symbol
seen by the linker

INTEGER FUNCTION IABS(I)
INTEGER I
REAL*4 FUNCTION ABS(X)
REAL*4 X
REAL*8 FUNCTION DABS(X)
REAL*8 X

int abs(int i);
float abs(float x);
double abs(double x);

BABAR C++ Course 68 Paul F. Kunz

ESTABLISHED
1962 Summary

Now we covered enough C/C++ so that every thing
you can do in Fortran you can now do in C/C++

You can also do more than you can do in Fortran

Next session we introduce classes and start on the
road towards object-oriented programming.

BABAR C++ Course 69 Paul F. Kunz

ESTABLISHED
1962 Classes

B&N: “Scientific and engineering problems are
rar ely posed directly in terms of the computer’s
intrinsic types: bits, bytes, integers and floating
point numbers”

Shocking statement?

In a detector’s tracking code, for example, the
problem is posed in terms of…

• tracks

• points

• list of points

• chamber

• cylinders

• layers

C++ with its mechanism of classes allows defining
new types and the operations on these types

When we do object-oriented programming with C++
we will be writing and using classes

BABAR C++ Course 70 Paul F. Kunz

ESTABLISHED
1962 Examples from CLHEP

Class Library for High Energy Physics

Why?

• Provide some classes are specific to HEP

• Encourage code sharing between experiments and
between experimentalists and theorists.

• Reduce redundant work

Who?

• started by Leif Lönnblad, Nordiita (via CERN, DESY
and Lund)

• Nobu Katayama (KEK) is current editor.

Use

• examples of use at
/usr/local/doc/programming/C++class/
SciEng/examples/clhep

• header files: /usr/local/lib/include/CLHEP

• library file for gcc: /usr/local/lib/libCLHEP.a

BABAR C++ Course 71 Paul F. Kunz

ESTABLISHED
1962 ThreeVector

CLHEP’s ThreeVector class (simplified)

• this is the declaration in the header file

• keyword class starts the declaration which is
contained within the {}

• class contains member functions

• an object can be an instance of a class

• an object of a class contains data members

class Hep3Vector {
public:
Hep3Vector();
Hep3Vector(double x, double y, double z);
Hep3Vector(const Hep3Vector &v);
double x();
double y();
double z();
double phi();
double cosTheta();
double mag();
// much more not shown

private:
double dx, dy, dz;

};

BABAR C++ Course 72 Paul F. Kunz

ESTABLISHED
1962 Using a class object

Consider (clhep/threeVector0.C)

• Hep3Vector aVec(x, y, z); declares aVec, a
object of type Hep3Vector and initializes it

• aVec.mag() calls the member function mag() of
the object

• the “.” is the class member access operator

• use “->” access operator when one has pointer to
object:

#include <iostream.h>
#include <CLHEP/ThreeVector.h>

int main() {
 double x, y, z;

 while (cin >> x >> y >> z) {
 Hep3Vector aVec(x, y, z);

cout << "r: " << aVec.mag();
cout << " phi: " << aVec.phi();
cout << " cos(theta): " << aVec.cosTheta() << endl;

 }
 return 0;
}

BABAR C++ Course 73 Paul F. Kunz

ESTABLISHED
1962 Data members

Look again

• Hep3Vector contains 3 data members

• declaration is like any other except no initializers are
allowed

• every instance of the class Hep3Vector will have
its own 3 data members.

• Hep3Vector is a type

• an object of type Hep3Vector has a value (or state)
that is represented by the values of its data members
(like a complex number)

• the size of a Hep3Vector object is likely to be
3*sizeof(double)

class Hep3Vector {
public:
// member functions

private:
double dx, dy, dz;

};

Hep3Vector x(1.0, 0.0, 0.0);
Hep3Vector y(0.0, 1.0, 0.0);
Hep3Vector z(0.0, 0.0, 1.0);

BABAR C++ Course 74 Paul F. Kunz

ESTABLISHED
1962 Memory model

Consider

In computer’s memory we have

• an object is an instance of a class (type)

• each object has its own data members

• one copy of the code for a class is shared by all
instances of the class

• hidden argument this is how it all works

Hep3Vector x(1.0, 0.0, 0.0);
Hep3Vector y(0.0, 1.0, 0.0);

Hep3Vector()
x()
y()
z()
mag()
phi()
cosTheta()

Code:Objects:

dx=1.
dy=0.
dz=0.

x:

dx=0.
dy=1.
dz=0.

y:

BABAR C++ Course 75 Paul F. Kunz

ESTABLISHED
1962 Use of private keyword

We have

• the following compiles

• the following does not compile

• this is called data hiding

• by disallowing direct access, you hide how data is
stored.

• one can change how data is stored without breaking
user code because you disallowed direct access

class Hep3Vector {
public:
double mag();
double x();
double dummy;
// member functions

private:
double dx, dy, dz;

};

Hep3Vector x(1.0, 0.0, 0.0);
cout << x.dummy;

Hep3Vector x(1.0, 0.0, 0.0);
cout << x.dx; // WRONG

BABAR C++ Course 76 Paul F. Kunz

ESTABLISHED
1962 Initializing a class object

At least 3 ways we would like to initialize an object

• no initial value

• with three double values

• copy of another object

• each calls a special member function called a
constructor

There are three constructors in the class

Hep3Vector a;

Hep3Vector a(1.0, 1.0, 1.0);

Hep3Vector a(1.0, 1.0, 0.0);
Hep3Vector b = a;

class Hep3Vector {
public:
Hep3Vector();
Hep3Vector(double x, double y, double z);
Hep3Vector(const Hep3Vector &v);
// much more not shown

private:
double dx, dy, dz;

};

BABAR C++ Course 77 Paul F. Kunz

ESTABLISHED
1962 Constructor Implementations

The constructor member functions

• called after memory space has been allocated

• when the class name and member name are the same,
then the member function is a constructor

• Foo::bar() says that bar() is a member function
of the class Foo

• :: is the scope resolution operator

• note that copy constructor uses a const reference

Hep3Vector::Hep3Vector(double x, double y, double z) {
dx = x;
dy = y;
dz = z;

}

Hep3Vector::Hep3Vector(const Hep3Vector &vec) {
dx = vec.dx;
dy = vec.dy;
dz = vec.dz;

}

Hep3Vector::Hep3Vector(){
}

BABAR C++ Course 78 Paul F. Kunz

ESTABLISHED
1962 Data Hiding

Violation of private parts?

• objects of the same class have access to private data
members

• the purpose of data hiding is to hide implementation
from other classes

• can’t hide implementation from object of same class

• const qualifier says we wouldn’t change argument

Hep3Vector::Hep3Vector(const Hep3Vector &vec) {
dx = vec.dx;
dy = vec.dy;
dz = vec.dz;

}

BABAR C++ Course 79 Paul F. Kunz

ESTABLISHED
1962 Access member functions

The declaration was

The implementation is

• inefficient?

• make function in-line

• always ask: “do I want the data to do some work or
do I want the object to do the work”

class Hep3Vector {
public:
double x();
double y();
double z();
// much more not shown

private:
double dx, dy, dz;

};

double Hep3Vector::x() {
return dx;

}
double Hep3Vector::y() {
return dy;

}
double Hep3Vector::z() {
return dz;

}

BABAR C++ Course 80 Paul F. Kunz

ESTABLISHED
1962 Inline access member functions

Change declaration to

• can be used when execution of function body is
shorter than time to call and return from function

• any decent compiler should produce inline code
instead of function call for above

• inline keyword is just a hint, however

• data hiding is preserved

• implementation needs to be in the header file

• sometimes put in file with .icc suffix that is
included by the header file (not BaBar practice)

• program could be faster

• program could be larger

inline double Hep3Vector::x() {
return dx;

}
inline double Hep3Vector::y() {
return dy;

}
inline double Hep3Vector::z() {
return dz;

}

BABAR C++ Course 81 Paul F. Kunz

ESTABLISHED
1962 More Implementation

Recall

Implementation

• note how object calls its own member function

• examples of letting object do the work

class Hep3Vector {
public:
double mag();
double phi();
double cosTheta();
// much more not shown

private:
double dx, dy, dz;

};

inline double Hep3Vector::mag() {
 return sqrt(dx*dx + dy*dy + dz*dz);
}

inline double Hep3Vector::phi() {
 return dx == 0.0 && dy == 0.0 ? 0.0 : atan2(dy,dx);
}

inline double Hep3Vector::cosTheta() {
 double ptot = mag();
 return ptot == 0.0 ? 1.0 : dz/ptot;
}

BABAR C++ Course 82 Paul F. Kunz

ESTABLISHED
1962 Design decisions

Fortran style

Another Fortran style

Mark II VECSUB style

common/points/hits(3,100)
real*4 hits
real*4 x, y, z, r
! do some work
x = hits(1,i) ! or from ZEBRA bank
y = hits(2,i)
z = hits(3,i)
r = sqrt(x*x + y*y + z*z);

common/points/hits(3,100)
real*4 hits
real*4 x, y, z, r
! do some work
x = hits(1,i)
y = hits(2,i)
z = hits(3,i)
r = mag(x, y, z) ! or mag(hits(1,i))

common/points/hits(3,100)
real*4 r
! do some work
r = hitsmag(i)

BABAR C++ Course 83 Paul F. Kunz

ESTABLISHED
1962 C++ design

C++ style

• efficient with inline functions

• don’t need knowledge of data structure

• modular

• re-usable

• later, we’ll get rid of the fixed or dynamic arrays

Hep3Vector hits[100];
// do some work
double r = hits[i].mag();

BABAR C++ Course 84 Paul F. Kunz

ESTABLISHED
1962 Homework

Suppose

• write the implementation for this class

• constructors take x, y, and z as arguments, but must
intialize r, cos(theta), and phi data members

• try clhep/threeVector0.C; it should still work
with this small change

• write a program to exercise x(), y(), and z()
member functions

class Hep3Vector {
public:

Hep3Vector();
Hep3Vector(double x, double y, double z);
Hep3Vector(const Hep3Vector &v);
inline double x();
inline double y();
inline double z();
inline double phi();
inline double cosTheta();
inline double mag();

private:
double r, cos_theta, phi;

};

// #include <CLHEP/ThreeVector.h>
#include “ThreeVector.h”

BABAR C++ Course 85 Paul F. Kunz

ESTABLISHED
1962 Another look at Hep3Vector

We’ll now look at the real Hep3Vector class and
explain those new language elements we need to
understand it

• uses default arguments

• const keyword after function means no data
member of the object will be changed by invoking
function

• this const is enforced when compiling the class

• the above are obvious, but it will be less obvious with
other classes in the future

class Hep3Vector {
public:
inline Hep3Vector(double x=0., double y=0., double z=0.);
inline Hep3Vector(const Hep3Vector&);
double x() const;
double y() const;
double z() const;
double phi() const;
double cosTheta() const;
double mag() const;
// much more not shown

private:
double dx, dy, dz;

};

BABAR C++ Course 86 Paul F. Kunz

ESTABLISHED
1962 Initializing syntax

Two forms to invoke copy constructor

• the two are equivalent if argument is same type as
object being declared

• both invoke copy constructor

• the = form allows user defined conversions when
argument is not same type

• both forms allowed for built-in type

Consider

• might be equivalent to

• but following has no suprises

Hep3Vector x(1.0, 0.0, 0.0);
Hep3Vector y = x; // C style
Hep3Vector y(x); // C++ class style

Hep3Vector x = 1.0;

Hep3Vector tmp(1.0);
Hep3Vector x = tmp;

Hep3Vector x(1.0);

BABAR C++ Course 87 Paul F. Kunz

ESTABLISHED
1962 Member Initializers

The constructor can be implemented like any other
member function…

• but data members need to be constructed before
assignment

• for Hep3Vector the custom constructor would be
called

An alternate form is use of member initializers

• note the : preceding the opening {

• dx(x) notation calls a constructor directly

• which constructor depends on argument matching

• in the above case, it is the copy constructor

• the function body is required, even if empty

Hep3Vector::Hep3Vector(double x, double y, double z){
dx = x;
dy = y;
dz = z;

}

Hep3Vector::Hep3Vector(double x, double y, double z) :
dx(x), dy(y), dz(z){}

BABAR C++ Course 88 Paul F. Kunz

ESTABLISHED
1962 Function Return Types

A function returns a temporary hidden variable that
is initialized by the return statement

Consider

• it is as if

Consider

• it is as if

float f() {
return 1;

}
float x;
// ...
x = f();

float tmp = 1;
x = tmp;

float & Vector3::x() {
return dx;

}
Vector3 vec;
// ...
vec.x() = 1.0; // uh?

float &tmp = vec.dx;
tmp = 1.0;

BABAR C++ Course 89 Paul F. Kunz

ESTABLISHED
1962 Operators are functions?

Operators can be thought of as functions

• add() operates on two arguments and returns a
result

• the symbol + operates on two operands and returns
a result

Use of mathematical symbols is more concise and
easier to read

C, C++, and Fortran all define operators for built-in
types

double add(double a, double b) {
return a + b;

}
double x, y, z;
//
z = x + y;
z = add(x, y);

double add(double a, double b);
double mul(double a, double b);
double a, b, x, y, z;
//
z = add(mul(a, x), mul(b,y));
z = a*x + b*y;

BABAR C++ Course 90 Paul F. Kunz

ESTABLISHED
1962 Operator Functions

An operator function in Hep3Vector

• the name of the function is the word operator
followed by the operator symbol

• this function is called when

• the function is invoked on q ; the left-hand side

• the argument will be p ; the right-hand side

• q += p; is shorthand for q.operator+=(p);

• the function returns a Hep3Vector reference for
consistency with built-in types

class Hep3Vector {
public:
inline Hep3Vector& operator +=(const Hep3Vector &);
// more not shown

Hep3Vector p, q;
//
q += p;

Hep3Vector p, q, r;
//
r = q += p;
// r.operator=(q.operator+=(p))

BABAR C++ Course 91 Paul F. Kunz

ESTABLISHED
1962 Operator Function Implementation

Implementation

• does the accumulation as one would expect

• this is a hidden argument that is a pointer to the
object’s own self

• this->dx is thus equivalent to dx

• remember: use -> instead of . when you have a
pointer

• or dx is shorthand for this->dx

• recall that Hep3Vector::x() is an in-line function
itself

• return *this returns the address of the object,
thus the reference

inline Hep3Vector& Hep3Vector::operator+=(const Hep3Vector& p) {
dx += p.x(); // could have been dx += p.dx

 dy += p.y();
 dz += p.z();
 return *this;
}

BABAR C++ Course 92 Paul F. Kunz

ESTABLISHED
1962 Compare Fortran and C++

Fortran vector sum

C++ vector sum

real p(3), q(3)
! ...
q(1) = q(1) + p(1)
q(2) = q(2) + p(2)
q(3) = q(3) + p(3)

Hep3Vector p, q;
// ...
q += p;

BABAR C++ Course 93 Paul F. Kunz

ESTABLISHED
1962 Operator Functions

Essentially all operators can be used for user defined
types except “.” , “.*” , “::” , “sizeof” and
“?:”

Can not define new ones

• sorry, can’t do operator**() for exponentiation

• and there’s no operator one could use with the correct
precedence

• can’t overload operators for built-in types

One should only use when conventional meaning
makes sense

• is this cross product or dot product?

• Hep3Vector defines it to be dot product

Hep3Vector p, q;
double z;
// ………
z = p*q; // uh?

BABAR C++ Course 94 Paul F. Kunz

ESTABLISHED
1962 Non-member Operator Function

Consider

• invoked by

• note return by value

• need a new object whose value is x*scale

• the temporary object is used as argument to
operator+=() and then discarded

• such temporary objects are generated by Fortran as
well

inline Hep3Vector operator*(const Hep3Vector& p, double a) {
 Hep3Vector q(a*p.x(), a*p.y(), a*p.z());
 return q;
}

double scale = 3.0;
Hep3Vector p(1.0); // unit vector along x axis
Hep3Vector r(0.0, 1,0);
r += p*scale;

real scale, p(3), r(3)
r(1) = r(1) + p(1)*scale
r(2) = r(2) + p(2)*scale
r(3) = r(3) + p(3)*scale

BABAR C++ Course 95 Paul F. Kunz

ESTABLISHED
1962 Need Symmetric Operator Functions

CLHEP has

• second one invoked by

• argument matching applies

• must use global function because
scale.operator*(p) doesn’t exist

inline Hep3Vector operator*(const Hep3Vector& p, double a) {
 Hep3Vector q(a*p.x(), a*p.y(), a*p.z());
 return q;
}
inline Hep3Vector operator*(double a, const Hep3Vector& p) {
 Hep3Vector q(a*p.x(), a*p.y(), a*p.z());
 return q;
}

double scale = 3.0;
Hep3Vector p(1.0); // unit vector along x axis
Hep3Vector q(0.0, 1,0);
q += scale*p;

BABAR C++ Course 96 Paul F. Kunz

ESTABLISHED
1962 The Complete List - I

Constructors

• also contains conversion constructor

Destructor

• invoked when object is deleted (more next session)

Accessor-like functions

inline Hep3Vector(double x=0.0, double y=0.0, double z=0.0);
inline Hep3Vector(const Hep3Vector &);

inline ~Hep3Vector();

inline double x() const;
inline double y() const;
inline double z() const;
inline double mag() const;
inline double mag2() const;
inline double perp() const;
inline double perp2() const;
inline double phi() const;
inline double cosTheta() const;
inline double theta() const;
inline double angle(const Hep3Vector &) const;
inline double perp(const Hep3Vector &) const;
inline double perp2(const Hep3Vector &) const;

BABAR C++ Course 97 Paul F. Kunz

ESTABLISHED
1962 The Complete List - II

Manipulators

Set functions

Output function

• allows

void rotateX(double);
void rotateY(double);
void rotateZ(double);
void rotate(double angle, const Hep3Vector & axis);
Hep3Vector & operator *= (const HepRotation &);
Hep3Vector & transform(const HepRotation &);

inline void setX(double);
inline void setY(double);
inline void setZ(double);
inline void setMag(double);
inline void setTheta(double);
inline void setPhi(double);

ostream & operator << (ostream &, const Hep3Vector &);

Hep3Vector x(1.0);
// ...
cout << x << endl;

BABAR C++ Course 98 Paul F. Kunz

ESTABLISHED
1962 The Complete List - III

Vector algebra member functions

Vector algebra non-member functions

Assignment operators

inline double dot(const Hep3Vector &) const;
inline Hep3Vector cross(const Hep3Vector &) const;
inline Hep3Vector unit() const;
inline Hep3Vector operator - () const;

Hep3Vector operator+(const Hep3Vector&, const Hep3Vector&);
Hep3Vector operator-(const Hep3Vector&, const Hep3Vector&);
double operator * (const Hep3Vector &, const Hep3Vector &);
Hep3Vector operator * (const Hep3Vector &, double a);
Hep3Vector operator * (double a, const Hep3Vector &);

inline Hep3Vector & operator = (const Hep3Vector &);
inline Hep3Vector & operator += (const Hep3Vector &);
inline Hep3Vector & operator -= (const Hep3Vector &);
inline Hep3Vector & operator *= (double);

BABAR C++ Course 99 Paul F. Kunz

ESTABLISHED
1962 Summary

Hep3Vector implements vector algebra

It was long and tedious to implement

Now that we have it (thank you, Leif and Anders),
we can use it and never have to expand these details
in our own code

Besides objects of type int , float , and double,
we can use operators with objects of type
Hep3Vector

We have a new type with higher level of abstraction

BABAR C++ Course 100 Paul F. Kunz

ESTABLISHED
1962 Levels of Abstraction in Physics

Do you recognize these equations?

∂Ei
∂xii

∑
∂Ex
∂x

∂Ey
∂y

∂Ez
∂z

+ + 4πρ= =

∂Bi
∂xii

∑
∂Bx
∂x

∂By
∂y

∂Bz
∂z

+ + 0= =

εijk xj∂
∂

i
∑ Ek 1

c

∂Bi
∂t

−=

∂Ez
∂y

∂Ey
∂z

− 1
c

∂Bx
∂t

−=

∂Ey
∂x

∂Ex
∂y

− 1
c

∂Bz
∂t

−=

∂Ex
∂z

∂Ez
∂x

− 1
c

∂By
∂t

−=

BABAR C++ Course 101 Paul F. Kunz

ESTABLISHED
1962 Higher Level of Abstraction

Now do you recognize them?

or even

To advance in physics/math, we need higher levels of
abstractions, else we get lost in implementation details

C++ allows higher level of abstract as well

∇ E• 4πρ=

∇ B×
4π
c

J 1
c

∂E
∂t

+=

∇ E× 1
c

∂B
∂t

−=

∇ B• 0=

∂αFαβ 4π
c

Jβ=

1
2

εαβγδ∂αF γδ 0 ∂αFβγ ∂βF γα ∂γFαβ+ += =

BABAR C++ Course 102 Paul F. Kunz

ESTABLISHED
1962 Plan of the day

Where are we at?

• session 1: basic language constructs

• session 2: pointers and functions

• session 3: basic class and operator overloading

Today

• design of two types of container classes

• templates

• friend

• nested classes

BABAR C++ Course 103 Paul F. Kunz

ESTABLISHED
1962 SimpleFloatArray Class

Design and implement an array class with

• run time sizing

• access to element with x[i]

• automatic memory management

• automatic copy of array elements

• automatic copy upon assignment

• set all elements of array to a value

• find the current size

• dynamic resizing

Each requirement leads to a member function

There will be some technical issues to learn

Warning: this will not be a production quality class

BABAR C++ Course 104 Paul F. Kunz

ESTABLISHED
1962 Why an array class?

Replace these parts of linefit.C

with

• to avoid pointers

• to get automatic deletion

• to show how to be able to do

cin >> n;
float* x = new float[n];

// munch munch
sx += x[i];
delete [] x;

cin >> n;
SimpleFloatArray x(n);

// munch munch
sx += x[i];

// delete [] x;

SimpleFloatArray x(n);
SimpleFloatArray y = x;
SimpleFloatArray z;
//
z = x; // copy array
x = 0.0; // clears the array

BABAR C++ Course 105 Paul F. Kunz

ESTABLISHED
1962 SimpleFloatArray Class Declaration

The header file (ch4/SimpleFloatArray.h)

• ~SimpleFloatArray() is the destructor member
function and is invoked when object is deleted

• float& operator[](int i) is the member
function invoked when the operator [] is used

• operator=() is member function invoked when
doing assignment: the copy assignment

• note private member function

class SimpleFloatArray {
public:
SimpleFloatArray(int n); // init to size n
SimpleFloatArray(); // init to size 0
SimpleFloatArray(const SimpleFloatArray&); // copy
~SimpleFloatArray(); // destroy
float& operator[](int i); // subscript
int numElts();
SimpleFloatArray& operator=(const SimpleFloatArray&);
SimpleFloatArray& operator=(float); // set values
void setSize(int n);

private:
int num_elts;
float* ptr_to_data;
void copy(const SimpleFloatArray& a);

};

BABAR C++ Course 106 Paul F. Kunz

ESTABLISHED
1962 Constructor Implementations

Constructors (ch4/SimpleFloatarray.C)

• by implementing the default constructor, we ensure
that every instance is in well defined state before it
can be used

• must implement copy constructor else the default
behavior is member-wise copy which would lead to
two array objects sharing the same data

SimpleFloatArray::SimpleFloatArray(int n) {
 num_elts = n;
 ptr_to_data = new float[n];
}

SimpleFloatArray::SimpleFloatArray() {
 num_elts = 0;
 ptr_to_data = 0; // set pointer to null
}

SimpleFloatArray::SimpleFloatArray(const SimpleFloatArray& a) {
 num_elts = a.num_elts;
 ptr_to_data = new float[num_elts];
 copy(a); // Copy a's elements
}

BABAR C++ Course 107 Paul F. Kunz

ESTABLISHED
1962 copy Implementation

Terse implementation (ch4/SimpleFloatArray.C)

• uses pointer arithmetic

• uses prefix operators

Fortran style implementation

• uses array notation on pointer

• uses postfix operator

void SimpleFloatArray::copy(const SimpleFloatArray& a) {
// Copy a's elements into the elements of our array
float* p = ptr_to_data + num_elts;
float* q = a.ptr_to_data + num_elts;
while (p > ptr_to_data) *--p = *--q;

}

void SimpleFloatArray::copy(const SimpleFloatArray& a) {
// Copy a's elements into the elements of *this
for (int i = 0; i < num_elts; i++) {

ptr_to_data[i] = a.ptr_to_data[i];
}

}

BABAR C++ Course 108 Paul F. Kunz

ESTABLISHED
1962 Destructor Member Function

Implementation (ch4/SimpleFloatArray.C)

• one and only one destructor

• function with same name as class with ~ prepended

• no arguments, no return type

• invoked automatically when object goes out of scope

• invoked automatically when object is deleted

• usually responsible for cleaning up any dynamically
allocated memory

SimpleFloatArray::~SimpleFloatArray() {
 delete [] ptr_to_data;
}

BABAR C++ Course 109 Paul F. Kunz

ESTABLISHED
1962 operator[] Member Function

Implementation

• overloads what [] means for object of this type

• returns reference to element in array

• since it is a reference, it can be used on right-hand or
left-hand side of assignment operator

• this snippet of code will work (ch4/linefit.C)

• remember, a reference is not a pointer

float& SimpleFloatArray::operator[](int i) {
 return ptr_to_data[i];
}

int n;
 cin >> n;
 SimpleFloatArray x(n);
 SimpleFloatArray y(n);

 for (int i = 0; i < n; i++) {
 cin >> x[i] >> y[i];
 }

double sx = 0.0, sy = 0.0;
 for (i = 0; i < n; i++) {
 sx += x[i];
 sy += y[i];
 }

BABAR C++ Course 110 Paul F. Kunz

ESTABLISHED
1962 operator= Member Function

Implementation

• if() statements tests that array object is not being
assigned to itself.

• this is a pointer to the object with which the
member function was called.

• must implement else default is member-wise copy
leading to two objects sharing the same data

• is the behaviour what we expected?

SimpleFloatArray&
SimpleFloatArray::operator=(const SimpleFloatArray& rhs) {
 if (ptr_to_data != rhs.ptr_to_data) {
 setSize(rhs.num_elts);
 copy(rhs);
 }
 return *this;
}

BABAR C++ Course 111 Paul F. Kunz

ESTABLISHED
1962 Assignment versus Copy

Copy Constructor

Assignment operator

Use

• should not implement one without the other

SimpleFloatArray::SimpleFloatArray(const SimpleFloatArray& a) {
 num_elts = a.num_elts;
 ptr_to_data = new float[num_elts];
 copy(a); // Copy a's elements
}

SimpleFloatArray&
SimpleFloatArray::operator=(const SimpleFloatArray& rhs) {
 if (ptr_to_data != rhs.ptr_to_data) {
 setSize(rhs.num_elts);
 copy(rhs);
 }
 return *this;
}

SimpleFloatArray x(n);
SimpleFloatArray y = x; // copy constructor
SimpleFloatArray z;
//
z = x; // copy array // assignment

BABAR C++ Course 112 Paul F. Kunz

ESTABLISHED
1962 Scaler assignment

Implementation

• set all elements of array to a value

• invoked by

• not

which attempts to do both construction and
assignment

• might add another constructor function to allocate
and assign

SimpleFloatArray& SimpleFloatArray::operator=(float rhs) {
 float* p = ptr_to_data + num_elts;
 while (p > ptr_to_data) *--p = rhs;
 return *this;
}

SimpleFloatArray a(10);
a = 0.0; // assignment

SimpleFloatArray a(10) = 0.0;

SimpleFloatArray a(10, 0.0);

BABAR C++ Course 113 Paul F. Kunz

ESTABLISHED
1962 The remaining implementation

Implementation

• nothing special here.

• can’t resize (no realloc())

• could save old data with re-write of class

int SimpleFloatArray::numElts() {
 return num_elts;
}

void SimpleFloatArray::setSize(int n) {
 if (n != num_elts) {

delete [] ptr_to_data;
 num_elts = n;
ptr_to_data = new float[n];

}
}

BABAR C++ Course 114 Paul F. Kunz

ESTABLISHED
1962 Key points

• should supply destructor function so object can
delete memory it allocated before it gets deleted itself

• must supply copy constructor and operator=() if
member-wise copy is not what we want

• should return reference in case where object could be
on left hand side of assignment

BABAR C++ Course 115 Paul F. Kunz

ESTABLISHED
1962 Class explosion?

Suppose we want SimpleIntArray?

Could copy SimpleFloatArray, edit everywhere
we find float and save to create new class

• tedious work

• duplicate code

• we’ll want to the same for double, Hep3Vector,
etc.

Could use void * instead of float and then cast
return values.

• only C programmers know what I’m talking about

• bad idea because we lose type safety

If we have n data types and m things to work with
them, we don’t want to have to write n x m classes

Enter template feature of C++ to solve this problem

BABAR C++ Course 116 Paul F. Kunz

ESTABLISHED
1962 SimpleArray Template Class

Class declaration (ch4/SimpleArray.h)

• template<> says what follows is a template for
producing a class

• <class T> is the template argument

• T is arbitrary symbol for some type, either built-in or
programmer defined (not necessarily a class)

• line breaking is a style issue

template<class T>
class SimpleArray {
public:

 SimpleArray(int n);
 SimpleArray();
 SimpleArray(const SimpleArray<T>&);
 ~SimpleArray();
 T& operator[](int i);
 int numElts();
 SimpleArray<T>& operator=(const SimpleArray<T>&);
 SimpleArray<T>& operator=(T);
 void setSize(int n);
private:
 int num_elts;
 T* ptr_to_data;

void copy(const SimpleArray<T>& a);
};

BABAR C++ Course 117 Paul F. Kunz

ESTABLISHED
1962 Use of Class Template

Line fit with template class (ch4/linefit2.C)

• SimpleArray<float> is now a class

• float replaced class T

• use a template class like any other class

• any type can be used

void linefit() {

 int n;
 cin >> n;
 SimpleArray<float> x(n);
 SimpleArray<float> y(n);

 // Read the data points
 for (int i = 0; i < n; i++) {
 cin >> x[i] >> y[i];
 }

// the rest is the same as before

SimpleArray<Hep3Vector> x(n);

BABAR C++ Course 118 Paul F. Kunz

ESTABLISHED
1962 Function Templates

Remember (ch2/doubleSqr.C)

Templated version (SciEng/utils.h)

Now we can do

• using the templated function generates one of the
correct type

• without the template function, implicit conversion
would happen (details in chapter 5)

inline double sqr(double x) {
 return x * x;
}

template<class T>
inline
T sqr(T x) {
 return x * x;
}

 int i = 1;
 float f = 3.1;
 Hep3Vector v(1, 1, 1);

 cout << sqr(i) << endl;
 cout << sqr(f) << endl;
 cout << sqr(v) << endl;

BABAR C++ Course 119 Paul F. Kunz

ESTABLISHED
1962 List or Array?

SimpleArray is fixed in size once created
or re-assigned

What we really want is a List

• add incrementally objects to a list

• remove objects from a list

• list should resize itself automatically

• provide a means to iterate through the list

• find member of a list

• insert an object at particular point in the list

• sort a list

•

•

•

•

BABAR C++ Course 120 Paul F. Kunz

ESTABLISHED
1962 Use of a List

Normalizing some numbers to minimum value
(ch6/demoList.C)

• reads until end of file

• finds minimum value

• adds to list

• iterate through list to normalize

int main() {
 // Read list of values and find minimum.
 List<float> list;
 float val;
 float minval = FLT_MAX; // from <float.h>
 while (cin >> val) {
 if (val < minval) minval = val;
 list.add(val);
 }

 // Normalize values and write out.
 for (ListIterator<float> i(list); i.more(); i.advance()) {
 cout << i.current() - minval << endl;
 }

return 0;
}

BABAR C++ Course 121 Paul F. Kunz

ESTABLISHED
1962 Linked List

A popular data structure

Advantages of a list compared to an array

• fast to re-size

• fast to insert

Disadvantage of a list compared to an array

• more memory per element

• slow to random access

3.1 3.5 3.8 4.1

. . . .

BABAR C++ Course 122 Paul F. Kunz

ESTABLISHED
1962 The Node and List classes

Declaration and implementation

• uses initializers

Declaration and implementation

• data members point to first and last nodes in order to
quickly add a node to end of list

template <class T>
class Node {
private:

Node(T x) : link(0), datum(x) {}
// perhpas more not shown
Node* link;
T datum;

};

template<class T>
class List {
public:
 List() : first(0), last(0) {}
 void add(T x) {
 if (first == 0) first = last = new Node(x);
 else last = last->link = new Node(x);
 }
private:
 Node* first;
 Node* last;
};

BABAR C++ Course 123 Paul F. Kunz

ESTABLISHED
1962 Problems

Some design issues

• If Node class will only be used by List, then
should it take such a simple name?

• If we always use ListIterator to access data, then do
we have to provide three accessor functions?

The answers makes use of two new features:

• nested classes

• friend declaration

Warning: this will not be production quality class

BABAR C++ Course 124 Paul F. Kunz

ESTABLISHED
1962 List with nested node class

Declaration and implementation (ch6/List.h)

• not only nested, but private as well

• Node as a class name is not visible outside of List

• did not have to repeat template keyword

• friend keyword allows access of private data
members to ListIterator<T> class

template<class T>
class List {
public:
 List() : first(0), last(0) {}
 void add(T x) {
 if (first == 0) first = last = new Node(x);
 else last = last->link = new Node(x);
 }
 friend class ListIterator<T>;
private:
 class Node {
 public:
 Node(T x) : link(0), datum(x) {}
 Node* link;
 T datum;
 };

Node* first;
 Node* last;
};

BABAR C++ Course 125 Paul F. Kunz

ESTABLISHED
1962 ListIterator class

Declaration and Implementation (ch6/List.h)

• violation of private parts?

• In List we had

• List<T>::Node* scoping is needed because Node
as a class name is not visible even to a friend

• note that List was easier to implement than
SimpleArray

• bool is now a type in C++, but not when the book
was written

template<class T>
class ListIterator {
public:
 ListIterator(const List<T>& list) : cur(list.first) {}

 Boolean more() const { return cur != 0; }
 T current() const { return cur->datum; }
 void advance() { cur = cur->link; }

private:
 List<T>::Node* cur;
};

friend class ListIterator<T>;

BABAR C++ Course 126 Paul F. Kunz

ESTABLISHED
1962 Iterators

Compare

with

• i is the iterator in both cases

• both initialize i to first element

• both use i to test for completion

• both increment i to next element

• both use i to reference element

• the ListIterator version is more tolerant to
changes

SimpleArray<float> a(n);
// ..
for (int i = 0; i < n; i++) {

sum += a[i];
}

List<float> list;
// ..
for (ListIterator<float> i(list); i.more(); i.advance()) {

sum += i.current();
}

BABAR C++ Course 127 Paul F. Kunz

ESTABLISHED
1962 Homework

Write a SimpleArrayIterator<> class with

• template class to work with SimpleArray<> class

• only four member functions: constructor,
advance(), current() and more()

We know the behavior, but what are the data
members?

BABAR C++ Course 128 Paul F. Kunz

ESTABLISHED
1962 Iterators++

Compare

with

• implement operator++()

• implement the deference operator

• make interator look like pointers

SimpleArray<float> a(n);
// ..
for (int i = 0; i < n; i++) {

sum += a[i];
}

List<float> list;
// ..
for (ListIterator<float> i(list); i.more(); i++) {

sum += *i;
}

BABAR C++ Course 129 Paul F. Kunz

ESTABLISHED
1962 Use of Containers

Chamber containing layers

• size is known at compile time

Event containing tracks and clusters

• size not known at compile time

Why use pointers?

• avoid copying object into list

• needed when same object is reference by multiple
lists, e.g. tracks can share hits

• but must be careful of memory management

class Chamber {
//
private:

Array<Layer *> layers;
// ...
}

class Event {
//
private:

List<Tracks *> tracks;
// ...
}

BABAR C++ Course 130 Paul F. Kunz

ESTABLISHED
1962 CLHEP containers

HepAList<class T>

• template class

• stores pointers to objects, i.e. does not copy objects

• behaves like both list and array

• array based implementation of list like-object

• has associated iterator

HepCList<class T>

• makes copy of objects

HepVector

• vector of n dimension

• stores doubles

• has mathmatical properties

CLHEP containers being phased out of BaBar code

BABAR C++ Course 131 Paul F. Kunz

ESTABLISHED
1962 Rogue Wave Collection Classes

Tool.h++ class library

• commerical libary

• 190 classes

• organized as number of different categories

BaBar reconstrction code uses

• RWTValOrderedVector<> for copying object

• RWTPtrOrderedVector<> for copying pointer to
object

• RWTValDList<> and RWTPtrDList<> when size is
not known at compile time

BABAR C++ Course 132 Paul F. Kunz

ESTABLISHED
1962 Standard Template Library (STL)

Features

• various types of templated containers

• very much iterator based

• supplies functions that can work with most kinds of
containers

• very well designed

Status

• contributed by HP labs, Palo Alto

• part of the draft standard since July 1994

• under UNIX, HP reference version compiles only
with IBM’s xlC

• hacked version works with gcc

• we’ll migrate to it in the future

• 4 books have been written about it (for example,
Musser and Saini)

BABAR C++ Course 133 Paul F. Kunz

ESTABLISHED
1962 Plan of the day

Inheritance is last major feature of the language that
we need to learn

• used to expressed common implementation

• used to expressed common behavior

• used to expressed common structure

Will di vert fr om the text book in order to introduce
HEP specific classes

• Examples from CLHEP

• Examples from Gismo (next session)

BABAR C++ Course 134 Paul F. Kunz

ESTABLISHED
1962 Recall ThreeVector

CLHEP’s ThreeVector class (simplified)

and some of the implementation

class Hep3Vector {
public:
Hep3Vector();
Hep3Vector(double x, double y, double z);
Hep3Vector(const Hep3Vector &v);
inline double x();
inline double y();
inline double z();
inline double phi();
inline double cosTheta();
inline double mag();
// much more not shown

private:
double dx, dy, dz;

};

inline double Hep3Vector::x() {
return dx;

}
inline double Hep3Vector::mag() {
 return sqrt(dx*dx + dy*dy + dz*dz);
}

BABAR C++ Course 135 Paul F. Kunz

ESTABLISHED
1962 Recall our test program

The object does the work (clhep/threeVector0.C)

including algebraic operators

#include <iostream.h>
#include <CLHEP/ThreeVector.h>

int main() {
 double x, y, z;

 while (cin >> x >> y >> z) {
 Hep3Vector aVec(x, y, z);

 cout << "r: " << aVec.mag();
 cout << " phi: " << aVec.phi();
 cout << " cos(theta): " << aVec.cosTheta() << endl;
 }
 return 0;
}

Hep3Vector p, q, r;
double z;
// …
z = p*q;
r = p + q;

BABAR C++ Course 136 Paul F. Kunz

ESTABLISHED
1962 Possible 4-Vector Class

Might look lik e…

Compare with 3-Vector class

• some member functions must be exactly the same

• some member functions are added

• some member functions must be re-implemented

• some data is the same

• one new data item

class HepLorentzVector {
public:
HepLorentzVector();
HepLorentzVector(double x, double y, double z, double t);
HepLorentzVector(const HepLorentzVector &v);
inline double x();
inline double y();
inline double z();
inline double t();
inline double phi();
inline double cosTheta();
inline double mag();
// much more not shown

private:
double dx, dy, dz, dt;

};

BABAR C++ Course 137 Paul F. Kunz

ESTABLISHED
1962 Another Possible 4-Vector Class

Might look lik e…

• HepLorentzVector has-a Hep3Vector

• could also say HepLorentzVector is built by
aggregation

• or with containment

class HepLorentzVector {
public:
HepLorentzVector();
HepLorentzVector(double x, double y, double z, double t);
HepLorentzVector(const HepLorentzVector &v);
inline double x();
inline double y();
inline double z();
inline double t();
inline double mag();
// much more not shown

private:
Hep3Vector vec3;
double dt;

};

BABAR C++ Course 138 Paul F. Kunz

ESTABLISHED
1962 Possible implementation

Constructors

• note use of initializers

• must construct data members when constructing
class object

Let 3-vector component do part of the work

must still implement functions like

HepLorentzVector::HepLorentzVecor() :
vec3(), dt(0.0){}

HepLorentzVector::
HepLorentzVector(double x, double y, double z, double t) :
vec3(x, y, z), dt(t) {}

HepLorentzVector::
HepLorentzVector(const HepLorentzVector &v) :
vec3(v.vec3), dt(v.dt) {}

double HepLorentzVector::mag() {
return sqrt(dt*dt - vec3.mag2());

}

double HepLorentzVector::x() {
return vec3.x();

}

BABAR C++ Course 139 Paul F. Kunz

ESTABLISHED
1962 YAPI

Constructors

• still have containment, but use a pointer

• makes sense in some situations (probably not here)

class HepLorentzVector {
public:
HepLorentzVector();
HepLorentzVector(double x, double y, double z, double t);
HepLorentzVector(const HepLorentzVector &v);
inline double x();
inline double y();
inline double z();
inline double t();
inline double mag();
// much more not shown

private:
Hep3Vector *vec3;
double dt;

};

BABAR C++ Course 140 Paul F. Kunz

ESTABLISHED
1962 YAPI implementation

Constructors might be

• using new operator to create one object

• will need to implement destructor!

HepLorentzVector::HepLorentzVecor() : dt(0.0)
{
vec3 = new Hep3Vector(0, 0, 0);

}

HepLorentzVector::
HepLorentzVector(double x, double y, double z, double t) :
dt(t)

{
vec3 = new Hep3Vector(x, y, z);

}

HepLorentzVector(const HepLorentzVector &v) : dt(v.dt)
{
vec3 = new Hep3Vector(v.vec3); // copy constructor

}

BABAR C++ Course 141 Paul F. Kunz

ESTABLISHED
1962 Inheritance

Part of the header file (CLHEP/LorentzVector.h)

• HepLorentzVector is-a Hep3Vector

• All public members of Hep3Vector are also public
members of HepLorentzVector by use of
keyword public in class declaration.

• member function t() is added

• member function mag() overrides function of same
name in Hep3Vector

• constructors take different arguments

• one new data member: dt

class HepLorentzVector : public Hep3Vector {
public:
HepLorentzVector();
HepLorentzVector(double x = 0., double y = 0.,

double z = 0., double t = 0.);
HepLorentzVector(const HepLorentzVector &v);
HepLorentzVector(const Hep3Vector &p, double t);
double t();
double mag();
// much more not shown

private:
double dt;

};

BABAR C++ Course 142 Paul F. Kunz

ESTABLISHED
1962 Use of Lorentz Vector

Consider (clhep/fourVector0.h)

• HepLorentzVector behaves like any other class

• how does a4Vect.x() work since no member
function has been defined?… by inheritance

• a4Vec.mag(), however, is completely different
from a3Vect.mag()

• output of program

int main() {
 double x, y, z, t;
while (cin >> x >> y >> z >> t) {

 Hep3Vector a3Vec(x, y, z);
 HepLorentzVector a4Vec(x, y, z, t);

 cout << "3-vector x and mag: "
<< a3Vec.x() << " " << a3Vec.mag() << endl;

 cout << "4-vector x and mag: "
<< a4Vec.x() << " " << a4Vec.mag() << endl;

 }
 return 0;
}

hpkaon> a.out
1 1 1 2
3-vector x and mag: 1 1.73205
4-vector x and mag: 1 1

BABAR C++ Course 143 Paul F. Kunz

ESTABLISHED
1962 Memory model

Consider

In computer’s memory we have

• inheritance of data members

• inheritance of member functions

Hep3Vector x(1.0, 0.0, 0.0);
HepLorentzVector y(1.0, 0.0, 0.0, 5.0);

Hep3Vector()
x()
y()
z()
mag()
phi()
cosTheta()

Code:Objects:

dx=1.
dy=0.
dz=0.

x:

y:

HepLorentzVector()
t()
mag()

dx=1.
dy=0.
dz=0.
dt=5.

BABAR C++ Course 144 Paul F. Kunz

ESTABLISHED
1962 Constructor Implementations

Constructors

• super class will be constructed before subclass

• use initializers to direct how to construct superclass

HepLorentzVector::
HepLorentzVector(double x, double y, double z, double t) :
Hep3Vector(x, y, z), dt(t) {}

HepLorentzVector::
HepLorentzVector(const Hep3Vector &v, double t) :
Hep3Vector(v), dt(t) {}

HepLorentzVector::
HepLorentzVector(const HepLorentzVector &v) :
Hep3Vector(v), dt(v.dt) {}

BABAR C++ Course 145 Paul F. Kunz

ESTABLISHED
1962 More of Implementation

As you might expect

• the t() member function is like we’ve seen before

This doesn’t work

• dx, dy, and dz were declared private

• private means access to objects of the same class
and HepLorentzVector is a different class

• could modify Hep3Vector to

• protected: means access to members of the same
class and all subclasses

inline double HepLorentzVector::t() const {
 return dt;
}

inline double HepLorentzVector::mag2() const {
 return dt*dt - (dx*dx + dy*dy + dz*dz);
}

class Hep3Vector {
public:
// same as before
protected:
double dx, dy, dz;
}

BABAR C++ Course 146 Paul F. Kunz

ESTABLISHED
1962 More on Implementation

Keep the base class data members private

• use scope operator :: to access function of same
name in super class

• now we can re-write Hep3Vector to use r,
costheta and phi without needing to re-write
HepLorentzVector

• less dependencies between classes is good

Finally, we have

• did you remember that 4-vector can have negative
magnitude?

inline double HepLorentzVector::mag2() const {
 return dt*dt - Hep3Vector::mag2();
}

inline double HepLorentzVector::mag() const {
 double pp = mag2();
 return pp >= 0.0 ? sqrt(pp) : -sqrt(-pp);
}

BABAR C++ Course 147 Paul F. Kunz

ESTABLISHED
1962 Even more of Implementation

The dot product

• use of accessor functions x(), y(), and z()
because data members are private in the super class

• scope operator :: not needed because these
functions are unique to the base class

The += operator

• example of directly calling operator function

Many other functions will not be shown

They implement the vector algebra for Lorentz
vectors

inline double
HepLorentzVector::dot(const HepLorentzVector & p) const {
 return dt*p.t() - z()*p.z() - y()*p.y() - x()*p.x();
}

inline HepLorentzVector &
HepLorentzVector::operator += (const HepLorentzVector& p) {
 Hep3Vector::operator += (p);
 dt += p.t();
 return *this;
}

BABAR C++ Course 148 Paul F. Kunz

ESTABLISHED
1962 What’ s new?

A Lorentz boost function

• register keyword advises compiler that variable
should be optimized in machine registers

Also have

void HepLorentzVector::boost(double bx, double by, double bz){
 double b2 = bx*bx + by*by + bz*bz;
 register double gamma = 1.0 / sqrt(1.0 - b2);
 register double bp = bx*x() + by*y() + bz*z();
 register double gamma2 = b2 > 0 ? (gamma - 1.0)/b2 : 0.0;

 setX(x() + gamma2*bp*bx + gamma*bx*dt);
 setY(y() + gamma2*bp*by + gamma*by*dt);
 setZ(z() + gamma2*bp*bz + gamma*bz*dt);
 dt = gamma*(dt + bp);
}

inline Hep3Vector HepLorentzVector::boostVector() const {
 Hep3Vector p(x()/dt, y()/dt, z()/dt);
 return p;
}
inline void HepLorentzVector::boost(const Hep3Vector & p){
 boost(p.x(), p.y(), p.z());
}

BABAR C++ Course 149 Paul F. Kunz

ESTABLISHED
1962 Diagrams

The old ones

• Booch’s “clouds”, supported by Rational/Rose

• Rumburgh’s OMT

The new one

• UML: Unified Modeling Language

• Booch and Rumburgh working together

• submitted for standardization

BABAR C++ Course 150 Paul F. Kunz

ESTABLISHED
1962 Aggration

If we have a has-a relationship we draw it thus

• corresponding code…

• LorenzVec contains ThreeVec

• contained object will be destroyed with the
containing object is destroyed

LorentzVec ThreeVec

class LorentzVec {
// much more not shown

private:
ThreeVec vec3;
double dt;

};

BABAR C++ Course 151 Paul F. Kunz

ESTABLISHED
1962 Association

If we have a association relationship we draw it thus

• corresponding code…

• not 100% sure just because we have
pointer

• only association if motor is replaceable

• depends on what kind of application this Car class
is being used for.

Car Motor

class Car {
// much more not shown

private:
Motor *m;
};

BABAR C++ Course 152 Paul F. Kunz

ESTABLISHED
1962 Inheritance

If we have is-a relationship we draw it thus

• corresponding code

• this is class relationship, not object relationship

• don’t be confused with our memory model diagrams

• we say ThreeVec is base class and LorentzVec is
derived class

ThreeVec

LorentzVec

class LorentzVec : public ThreeVec {
// much more not shown

private:
double dt;

};

BABAR C++ Course 153 Paul F. Kunz

ESTABLISHED
1962 Bad inheritance

When a square is a rectangle and when it isn’t

• corresponding code

• now what’s the Square going to do about these member
functions?

• in math, a square is a subset of all rectangles, but in C++ a
Square is not a subclass of Rectangle

Rectangle

Square

class Rectangle {
// much more not shown
void setLength(float);
void setHeight(float);

//...
float length, height;

};

BABAR C++ Course 154 Paul F. Kunz

ESTABLISHED
1962 A Possible Particle class

Take Lorentz vector and add to it

• note one can inherit from a class which is derived class

• added features are charge, pointer to entry in particle data
table, list of children, and pointer to parent

• owns list of children

• _pdtEntry and _parent are pointers because of shared
objects

• not very useful class

class Particle : public HepLorentzVector
{
public:
 Particle();
 Particle(HepLorentzVector &, PDTEntry *);
 Particle(const Particle &);
 virtual ~Particle() {}
 float charge() const;
 float mass() const;
// more methods not shown

protected:
 float _charge; // units of e
 PDTEntry *_pdtEntry;
 HepAList<Particle> _children;
 Particle *_parent;
};

BABAR C++ Course 155 Paul F. Kunz

ESTABLISHED
1962 Data Model

In computer’s memory we have

Hep3Vector()
x()
y()
z()
mag()
phi()
cosTheta()

Code:Objects:

HepLorentzVector()
t()
mag()

Particle()
charge()
mass()

dx
dy
dz
dt
_charge
_pdtEntry
_children
_parent

dx
dy
dz

dx
dy
dz
dt

BABAR C++ Course 156 Paul F. Kunz

ESTABLISHED
1962 Class Diagram

Inheritance and relationships

• Particle has 0 to n children and 0 or 1 parents

• Particle has association with PdtEntry

• we leave the HepAList<> out of the picture

Hep3Vector

HepLorentzVector

Particle 0..*
PdtEntry

0..1 children

parent

BABAR C++ Course 157 Paul F. Kunz

ESTABLISHED
1962 Object Hierarchy

In computer memory we have

• the class and object hierarchies are different in
dimensions

_parent
:Particle :Particle :Particle

:HepAList

:PdtEntry

:Particle

BABAR C++ Course 158 Paul F. Kunz

ESTABLISHED
1962 The 3 hierarchies of OOP

It’ s a three dimensional space

• Class hierarchy describes behavior

• Object hierarchy describes data structure

• hierarchy of levels of abstraction, e.g. float, vector,
lists, arrays, particle, etc.

classobject

abstraction

BABAR C++ Course 159 Paul F. Kunz

ESTABLISHED
1962 Multiple Inheritance

One can inherit from more than one class
(aslund/AsTrack.h)

• AsTrack inherits from both Particle and
HepLockable

• both data members and member functions are
inherited from both classes

class AsTrack : public HepLockable, public Particle
{
public:
 AsTrack();
 AsTrack(AsEvent *e, int type, int index);
 AsTrack(const AsTrack &);

virtual ~AsTrack();
// more member functions not shown

}

BABAR C++ Course 160 Paul F. Kunz

ESTABLISHED
1962 Class hierarchy

For both data members and functions we have

• AsTrack has the functions defined in itself and all
of its super classes

• AsTrack has data members defined in itself and all
of its super classes

Lorentz-vector

Particle

AsTrack

3-vector

Lockable

BABAR C++ Course 161 Paul F. Kunz

ESTABLISHED
1962 AsTrack’s constructor

Beginning of constructor (aslund/AsTrack.cc)

• note calling the constructors of the super classes

• careful: the super class constructors are called in
order of the class definition, not necessarily in the
order listed in the constructor.

• trkallc is a Fortran subroutine that fetches data out
of ASLUND’s COMMON blocks

AsTrack::AsTrack(AsEvent *e, int type, int index)
 : Lockable(), Particle()
{
 _type = type;
 _index = index;

int ftype = type + 1;
 int find = index + 1;
 float p[20];
 trkallc(&ftype, &find, p);

 setX(p[0]);
 setY(p[1]);
 setZ(p[2]);
 setT(p[3]);
 _charge = p[10];
// more not shown

BABAR C++ Course 162 Paul F. Kunz

ESTABLISHED
1962 Summary

We now know enough C++ to do a physics analysis

Next session we’ll look at polymorphic uses of
inheritance with examples from Gismo

Then, we’ll be pretty much done with learning the
language

It’ s soon time to start some mini-projects using C++

BABAR C++ Course 163 Paul F. Kunz

ESTABLISHED
1962 Plan of the day

Few more language features

Particle data table

Polymorphic inheritance

BABAR C++ Course 164 Paul F. Kunz

ESTABLISHED
1962 Enumerations

mnemonic names for integer codes grouped into sets

• Color is programmer defined type

• red, orange, etc are constants of type Color

• c is declared as type Color with inital value of
green

• c can change, but red, orange etc can not

• enum values are converted to int when used in
arithmetic or logical operations

• default integer values start at 0 and increment by 1

• can override the default.

• but valued stored in variable which is an enumerated
type is limited to the values of the enum

• uniqueness of the enumerated values is guaranteed

• slightly different from C

enum Color { red, orange, yellow, green, blue, indigo, violet };

Color c = green;

enum Polygon { triangle = 3, quadrilateral, pentagon };

BABAR C++ Course 165 Paul F. Kunz

ESTABLISHED
1962 PdtLund Class

Extract from this class (PDT/PdtLund.hh)

• enum nested in class

• must use scoping to access outside of class

• the scoping helps the readability and avoids name
conflicts

• scope type and constants

class PdtLund
{
public:
// a list of common particles
// the numbers are PDG standard particle codes
enum LundType {
e_minus = 11, nu_e, mu_minus, nu_mu,
e_plus = -11, nu_e_bar = -12

// many more not shown
};

};

PdtLund::LundType l = PdtLund::e_minus;

BABAR C++ Course 166 Paul F. Kunz

ESTABLISHED
1962 Layout

• Pdt has one data member:
HepAList<PdtEntry> _entries

• PdtEntry has data members for particle properties
and an AList<DecayMode> for list of decay modes

• DecayMode has data members for branching
fraction and an AList<PdtEntry> for list of
children.

• AList entries are pointers or references, not copies

µ±

π±

π0

K±

K0

η
ρ
ω

K+→µ+ν
K+→e+ν
K+→π+π0

K+→π+π+π-

K+→π+π0π0

K+→π0µ+ν

π+

π0

AList<PDTEntry>

AList<PDTEntry>

π0

AList<DecayMode>

BABAR C++ Course 167 Paul F. Kunz

ESTABLISHED
1962 static keyword

Part of the Pdt class declaratin (PDT/Pdt.hh)

• a static data member is one that is shared by all
instances of the class, e.g. a global within the scope
of the class

• a static member function is one that is global
within the scope of the class

• access a data member or member function with scope
operator

class Pdt
{
public:
 // return entry pointer given particle id or name
static PdtEntry* lookup(const char *name);
static PdtEntry* lookup(PdtLund::LundType id);
static PdtEntry* lookup(PdtGeant::GeantType id);
static float mass(PdtLund::LundType id);

 static float mass(PdtGeant::GeantType id);
 static float mass(const char* name);
// more not shown
private:
static HepAList<PdtEntry> _entries;

};

mass = Pdt::mass(PdtLund::pi_plus);

BABAR C++ Course 168 Paul F. Kunz

ESTABLISHED
1962 PDTEntry class

Parts of the header file (bfast/PDTEntry.h)

• note forward declaration of class

class DecayMode;
class PdtEntry {
public:
const char *name() const {return _name;}
float charge() const {return _charge;}
float mass() const {return _mass;}
float width() const {return _width;}

// more not shown
protected:
char *_name;
float _mass; // nominal mass (GeV)
float _width; // width (0 if stable) (GeV)
float _lifeTime; // c*tau, (cm)
float _spin; // spin, in units of hbar
float _charge; // charge, in units of e
float _widthCut; // used to limit range of B-W
float _sumBR; // total branching ratio
HepAList<DecayMode> _decayList;
PdtLund::LundType _lundid;
PdtGeant::GeantType _geantid;

};

BABAR C++ Course 169 Paul F. Kunz

ESTABLISHED
1962 DecayMode class

From the header file (bfast/DecayMode.h)

• nothing new

class DecayMode {
public:
DecayMode(float bf, HepAList<PdtEntry> *l) {
_branchingFraction = bf;
_children = l;

 }
float BF() const { return _branchingFraction; }
const HepAList<PDTEntry> *childList() const {

return _children; }
protected:
float _branchingFraction;
HepAList<PdtEntry> *_children;

};

BABAR C++ Course 170 Paul F. Kunz

ESTABLISHED
1962 Detector Simulation

What classes are involved?

• 3-vector

• geometry

• track

• detectors

• fields

• etc

Will take examples from Gismo project

• C++ framework for detector simulation and
reconstruction;

• we’ll see how it differs from the Fortran black box
approach, e.g. GEANT 3

BABAR C++ Course 171 Paul F. Kunz

ESTABLISHED
1962 Gismo History

Version 0, the prototype

• written by Bill Atwood (SLAC) and Toby Burnett
(U Washington)

• completed in Spring 1991

Version 1, previous release

• written by Atwood, Burnett, Alan Breakstone
(Hawaii), Dave Britton (McGill) and others

• used C++ but without templates and without CLHEP

• first release was summer 1992

• ftp://ftp.slac.stanford.edu/pub/
sources/gismo-0.5.0.tar.Z

• will show code based on this version

Version 2, current version

• written by Atwood and Burnett

• C++ with templates and CLHEP

• http://www.phys.washington.edu/
~burnett/gismo/

BABAR C++ Course 172 Paul F. Kunz

ESTABLISHED
1962 Some Gismo Classes

• other Gismo classes are not shown

• we see several independent class hierarchies

• objects from these hierarchies will work together

Let’ s browse some of the classes

Ray

Surface

Helix

Plane

Rectangle

Cylinder

AntiCylinder

Volume

Tube

Circle

Box

BABAR C++ Course 173 Paul F. Kunz

ESTABLISHED
1962 Ray class

Part of the header

• you can pretty well guess the significance of the data
members and many of the member functions

• a ray is clearly a straight line

• we have some virtual functions whose signifance will
be explained shortly

class Surface;
class Ray
{
public:
Ray();
Ray(const ThreeVec& p, const ThreeVec& d);
virtual ~Ray() {};
Ray(const Ray& r);
virtual ThreeVec position(double s) const;
const ThreeVec& position() const {return pos;}
virtual double curvature() const;
virtual double
distanceToLeaveSurface(const Surface* s, ThreeVec& p) const;

// more not shown
protected:
ThreeVec pos;
ThreeVec dir;
float arclength;

};

BABAR C++ Course 174 Paul F. Kunz

ESTABLISHED
1962 Helix class

Part of the header

• many member functins must be re-implemented
here, so probably a Helix is not a Ray

• we have some more virtual functions

class Helix : public Ray
{
public:
Helix();
Helix(const ThreeVec& p, const ThreeVec& d,

 const ThreeVec& a, double r);
virtual ~Helix() {};
Helix(const Helix& r);
virtual ThreeVec position(double step) const;
double curvature() const { return 1.0 / rho; }
virtual double
distanceToLeaveSurface(const Surface* s, ThreeVec& p) const;
// many more not shown

protected:
ThreeVec axis; // helix axis direction (unit vector)
double rho; // helix radius, sign significant
ThreeVec perp; // perpendicular direction
double parallel;// component along axis

};

BABAR C++ Course 175 Paul F. Kunz

ESTABLISHED
1962 Surface class

Part of the header

• data members can be first in file, but not usual
practise

• the distanceAlong member functions are pure
virtual

• an instance of Surface can not be instanciated

• Surface exists to define an interface

class Surface
{
protected:

ThreeVec origin; // origin of Surface
public:

Surface() : origin() {}
Surface(const ThreeVec& o) : origin(o) {}
virtual ~Surface() {}
Surface(const Surface& s) {

origin = s.origin; }
virtual double distanceAlongRay(

int which_way, const Ray* ry, ThreeVec& p) const = 0;
virtual double distanceAlongHelix(

int which_way, const Helix* hx, ThreeVec& p) const = 0;
 virtual int withinBoundary(const ThreeVec& x) const = 0;

/// more not shown
};

BABAR C++ Course 176 Paul F. Kunz

ESTABLISHED
1962 Plane class

Part of header

• Plane is infinite since it has no data members to
describe boundary

• distance along ray to infinite plane can be calcutated,
so implementatin does exist here

class Plane: public Surface
{
public:
Plane(const Point& origin, const Vector& n);
Plane(const Point& origin, const Vector& nhat,

 double dist);
virtual double distanceAlongRay(

int which_way, const Ray* ry, ThreeVec& p) const;
virtual double distanceAlongHelix(

int which_way, const Helix* hx, ThreeVec& p) const;
// more not shown

private:
 double d;
 // offset from origin to surface
};

BABAR C++ Course 177 Paul F. Kunz

ESTABLISHED
1962 Circle class

Part of header

• has data member to describe boundary

• also has member function to give the answer

class Circle: public Plane
{
public:
Circle() : Plane() { radius = 1.0; }
Circle(const ThreeVec& o,

const ThreeVec& n, double r);
virtual ~Circle() {}
Circle(const Circle& c);
virtual int withinBoundary(const ThreeVec& x) const;

// more not shown
protected:
double radius;

};

BABAR C++ Course 178 Paul F. Kunz

ESTABLISHED
1962 Rectangle class

Part of the header

• data members to describe boundary

• member function to test for boundary

• data member to describe direction

class Rectangle: public Plane
{
public:
Rectangle();
Rectangle(const ThreeVec& o, const ThreeVec& n,

double l, double w, const ThreeVec& la);
virtual ~Rectangle() {}
Rectangle(const Rectangle& r);
virtual int withinBoundary(const ThreeVec& x) const;

protected:
double length, width;
ThreeVec length_axis;

};

BABAR C++ Course 179 Paul F. Kunz

ESTABLISHED
1962 Gismo Volume

Part of the header

• Volume is a base class with common functionality of
all volumes

• it contains a list of surfaces that describe the volume

• it contains a 3-vector for its center and 3 doubles for
its rotation

• member functions not shown allow one to build
abitrary volumes, move them, and rotate it.

• for tracking, key member function is
distanceToLeave

class Volume
{
// a lot not shown
virtual double distanceToLeave(const Ray& r,

ThreeVec& p, const Surface*& s) const;
protected: // make available to derived classes
HepAList<Surface> surface_list;
ThreeVec center; // center of Volume
double roll, pitch, yaw;

};

BABAR C++ Course 180 Paul F. Kunz

ESTABLISHED
1962 Subclasses of Volume

Box

• constructor builds six surfaces, positions them, and
adds them to surface list

• hardly any other member functions, nor any data
members

• same for Cylinder and other classes

• any one could add a new volume subclass in a smiliar
way, for example a light pipe

class Box : Volume
{
 Box(float len, float width, float height);
Box(const Box &);
virtural ~Box();
// very little not shown

};

BABAR C++ Course 181 Paul F. Kunz

ESTABLISHED
1962 Part of implementation

The key member function

• loop over all surfaces to find the shortest distance

• the Ray object appears to do the work

• we don’t know if the Ray object is-a Ray or the
Helix subclass

double Volume::distanceToLeave(const Ray& r,
ThreeVec& p, const Surface *&sf) const

{
double d = 0.0, t = FLT_MAX;
ThreeVec temp (t, t, t);
p = temp;
sf = 0;
Surface *s;
HepAListIterator<Surface> iter(surface_list);
while (s = iter.next()) {
d = r.distanceToLeaveSurface(s, temp);
if ((t > d) && (d >= 0.0)) {

t = d;
p = temp;
sf = s;

}
}
return t;

}

BABAR C++ Course 182 Paul F. Kunz

ESTABLISHED
1962 Recall Memory model

Consider

In computer’s memory we have

• but now, we want Volume to invoke
Helix::distanceToLeaveSurface

Ray r;
Helix h;

Ray()
position()
distanceToLeave()

Code:Objects:

r:

h:

Helix()
position()
distanceToLeave()

BABAR C++ Course 183 Paul F. Kunz

ESTABLISHED
1962 The virtual function table

Memory model with virtual functions

• virtual member functions are invoked indirectly via
the virtual function table

• the table contains pointers to the member functions

• each class initializes the table with its functions

Ray()
position()
distanceToLeave()

Code:Objects:

r:

h:

Helix()
position()
distanceToLeave()

BABAR C++ Course 184 Paul F. Kunz

ESTABLISHED
1962 Back to implementation

We have

• compiler creates different machines instructions to
invoke a virtual member function

• distanceToLeaveSurface was declared
virtual so correct function gets called

• can even add another subclass of Ray without
recompiling this code

double Volume::distanceToLeave(const Ray& r,
ThreeVec& p, const Surface *&sf) const

{
double d = 0.0, t = FLT_MAX;
ThreeVec temp (t, t, t);
p = temp;
sf = 0;
Surface *s;
HepAListIterator<Surface> = iter(Surface_list);
while (s = iter.next()) {
d = r.distanceToLeaveSurface(s, temp);
if ((t > d) && (d >= 0.0)) {

t = d;
p = temp;
sf = s;

}
}
return t;

}

BABAR C++ Course 185 Paul F. Kunz

ESTABLISHED
1962 Following the trail

In Ray and Helix we have

• so Surface will do the work

• this design pattern is called the Visitor pattern or the
Double-Dispatch pattern

• via the Ray or Helix, we invoke the correct
member function of Surface subclass

• recall that these functions were pure virtual in
Surface

double Ray::distanceToLeaveSurface
(const Surface* s, ThreeVec& p) const

{
return s->distanceAlongRay(1, this, p);

}
//
double Helix::distanceToLeaveSurface

(const Surface* s, ThreeVec& p) const
{

return s->distanceAlongHelix(1, this, p);
}

BABAR C++ Course 186 Paul F. Kunz

ESTABLISHED
1962 Where’s the implementation?

Where will we find distanceAlongRay?

• it’s not in Surface

• one implementation in Plane

• but we really instansiate objects of type Circle or
Rectangle

• another in Cylinder

Surface

Plane

Rectangle

Cylinder

AntiCylinderCircle

BABAR C++ Course 187 Paul F. Kunz

ESTABLISHED
1962 Implementation

In Plane, we have

• withinBoundary() member function must be in
Circle or Rectangle

• example of template pattern

double Plane::distanceAlongRay(int which_way,
const Ray* ry, ThreeVec& p) const

{
double dist = FLT_MAX;
ThreeVec lv (FLT_MAX, FLT_MAX, FLT_MAX);
p = lv;

// Origin and direction unit vector of Ray.
ThreeVec x = ry->position();
ThreeVec dhat = ry->direction(0.0);
ThreeVec nhat = normal(); // Normal to plane
double denom = nhat * dhat;
if ((denom * which_way) <= 0.0)
return dist; // return large distance

double d = (((getOrigin() - x) * nhat) / denom);
if ((d >= 0.0) && (d < FLT_MAX)) {
dist = d;
p = ry->position(d);
if (withinBoundary(p) == 0) {
dist = FLT_MAX;
p = ThreeVec(FLT_MAX, FLT_MAX, FLT_MAX);

}
}
return dist;

}

BABAR C++ Course 188 Paul F. Kunz

ESTABLISHED
1962 As expected

In Circle we have

In Rectangle we have

int Circle::withinBoundary(const ThreeVec& x) const
{
ThreeVec p = x - origin;
if (p.magnitude() <= radius)
return 1;

else
return 0;

}

int Rectangle::withinBoundary(const ThreeVec& x) const
{
ThreeVec p = x - origin;
ThreeVec width_axis = norm.cross(length_axis);
if ((fabs(p * length_axis) <= (0.5 * length)) &&

(fabs(p * width_axis) <= (0.5 * width)))
return 1;

else
return 0;

}

BABAR C++ Course 189 Paul F. Kunz

ESTABLISHED
1962 Virtual destructor

In Volume, we may have

• we need to call the destructor for Circle, Plane,
etc

• thus we make the destructor virtual for this heirarchy

Volume::~Volume()
{
Surface *s;
HepListIterator<Surface> = it(surface_list);
while (s = it()) {
delete s;

}
delete surface_list;

}

BABAR C++ Course 190 Paul F. Kunz

ESTABLISHED
1962 Summary

Inheritance used for

• used to expressed common implementation

• used to expressed common behavior

• used to expressed common structure

Virtual inheritance allows objects to use abstract
base functions with concrete classes

BABAR C++ Course 191 Paul F. Kunz

ESTABLISHED
1962 We’re Done!

But…

• its like you’ve heard lectures on how to swim, but
now you face the deep end of the pool

• its like you know the rules of the game of chess, but
have not yet studied stratgies

Further r eading:

• Designing object-oriented C++ applications using
the Booch method, Robert C. Martin, ISBN 0-13-
203837-4, Prentice Hall

• Design Patterns, Gamma, Helm, Johnson, and
Vlissides, ISBN 0-201-63361-2, Addison-Wesley

