next up previous
Next: Measurement Error Matrix at Up: No Title Previous: Summary

Effects of Thin Layer Multiple Scattering

  Consider a particle passing through a thin layer, whose track parameter vector changes from ${\bf a}$ to ${\bf a'}$ due to multiple scattering there. We assume here that the track parameter vector of the particle is measured after the multiple scattering to be ${\bf a}_M$with its error matrix $E_{{\bf a}_M}$[*]. In the Gaussian approximation valid for small angle multiple scattering, the probability of getting ${\bf a}_M$ when the true track parameter vector before the multiple scattering is ${\bf a}$ is given by  
 \begin{displaymath}
\begin{array}
{lll}
 P\left({\bf a}_M;{\bf a}\right)
 & = & ...
 ...left( {\bf a} - {\bf a}'' \right) 
 \right) \right],\end{array}\end{displaymath} (1)
where E'MS is the diagonalized error matrix corresponding to multiple scattering[*] N is a normalization factor depending only on $E_{{\bf a}_M}$ and E'MS, and
\begin{displaymath}
\begin{array}
{lll}
\nonumber
 \left( {\bf a} - {\bf a}' \ri...
 ...& = & 
 ( 1 + B ) \left( {\bf a} - {\bf a}'' \right)\end{array}\end{displaymath}   
with B being a matrix whose only nonzero component is $(B)_{35} = \kappa\tan\lambda/(1+\tan^2\lambda)$.Making use of the fact that B is nilpotent, i.e. B2 = 0, we can easily eliminate ${\bf a}''$ from the exponent of Eq.A.1:
\begin{displaymath}
\begin{array}
{lll}
 & ~& -\frac{1}{2} \left(
 \left( {\bf a...
 ... \cdot
 \left( {\bf a} - {\bf a}_M \right) \right) ,\end{array}\end{displaymath} (3)
where we have defined
\begin{displaymath}
\begin{array}
{lll}
 {\bf a}'' \equiv {\bf a}'
 - \left( E_{...
 ...\cdot {\bf a}_M
 + E_{MS}^{-1} \cdot {\bf a} \right)\end{array}\end{displaymath} (4)
and
\begin{displaymath}
\begin{array}
{lll}
 E_{MS}^{-1} & \equiv & (1-B)^T {E'}_{MS...
 ...
 & = & \left[ (1+B) {E'}_{MS} (1+B)^T \right]^{-1}.\end{array}\end{displaymath} (5)
Changing the integration variable from ${\bf a'}$ to ${\bf a}''$, Eq.A.1 now becomes
\begin{displaymath}
\begin{array}
{lll}
 P\left({\bf a}_M;{\bf a}\right)
 & = & ...
 ...1} + E_{MS}^{-1} \right) \cdot {\bf a}'' 
 \right] .\end{array}\end{displaymath} (6)
Notice that the last line is a constant independent of ${\bf a}$ and ${\bf a}_M$,which proves that the error matrix including the multiple scattering has to be
\begin{displaymath}
\begin{array}
{lll}
 E_{\bf a} & = & E_{{\bf a}_M} + E_{MS} \cr
 & = & E_{{\bf a}_M} + (1+B) {E'}_{MS} (1+B)^T\end{array}\end{displaymath} (7)

The derivation of the explicit form of E'MS is straightforward. The multiple scattering changes the helix parameter vector from ${\bf a}$ to ${\bf a'}$and, when the pivot is chosen to be the point of the multiple scattering, the tangential vector thereat changes as
\begin{displaymath}
\begin{array}
{lll}
 \left. \frac{d}{d\phi} \right\vert _{\p...
 ...ial y}
 + \tan\lambda' \frac{\partial}{\partial z} .\end{array}\end{displaymath} (8)
Then the direction change of the track in space $\Delta \theta$ is given by
\begin{displaymath}
\begin{array}
{lll}
 ( \Delta \theta )^2 \simeq
 \sin^2 \Del...
 ... + \frac{ (\Delta\phi_0)^2 }{ (1+\tan^2\lambda) } , \end{array}\end{displaymath} (9)
where $\Delta \phi_0$ and $\Delta \tan\lambda$ are defined as components of $\Delta {\bf a} \equiv {\bf a'} - {\bf a}$.The above equation determines E'MS through
\begin{displaymath}
\begin{array}
{lll}
 \chi^2_{MS} & = & \left(\frac{\Delta\th...
 ...{\bf a}^T \cdot {E'}_{MS}^{-1} \cdot \Delta {\bf a}.\end{array}\end{displaymath} (10)


next up previous
Next: Measurement Error Matrix at Up: No Title Previous: Summary
Keisuke Fujii
12/4/1998