
Development of a Geant4 Solid for Stereo Mini-jet Cells
in a Cylindrical Drift Chamber

Kotoyo Hoshinaa, Keisuke Fujiia1, and Osamu Nitohb,

a High Energy Accelerator Research Organization(KEK), Tsukuba, 305-0801, Japan
bTokyo University of Agriculture and Technology, Tokyo 184-8588, Japan

Abstract

Stereo mini-jet cells will be indispensable components of a future e+e− linear
collider central tracker such as JLC-CDC. There is, however, no official Geant4 solid
available at present to describe such geometrical objects, which had been a major
obstacle for us to develop a full Geant4-based simulator with stereo cells built in. We
have thus extended Geant4 to include a new solid (TwistedTubs), which consists of
three kinds of surfaces: two end planes, inner and outer hyperboloidal surfaces, and
two so-called twisted surfaces that make slant and twisted φ-boundaries. Design
philosophy and its realization in the Geant4 framework are described together with
algorithmic details. We have implemented stereo cells with the new solid, and
tested them using geantinos and Pythia events (e+e− → ZH at

√
s = 350 GeV).

The performance was found reasonable: the stereo cells consumed only 25% more
CPU time than ordinary axial cells.

Keywords: Geant4, Solid, Stereo Cell, Cylindrical Drift Chamber
PACS code: 07.05.Tp, 02.70.Lq

1Corresponding authhor.
E-Mail address: fujiik@jlcuxf.kek.jp
TEL: +8-298-64-5373
FAX: +8-298-64-2580

1 Introduction

Experiments at a future linear e+e− collider such as JLC[1] will open up a novel possibility
to reconstruct all the final states in terms of fundamental particles (leptons, quarks, and
gauge bosons). This involves identification of heavy unstable particles such as W , Z, and
t through jet invariant-mass measurements. High resolution energy flow measurements
will thus be crucial, necessitating high resolution tracking and calorimetry as well as
good track-cluster matching to avoid double counting. A large cylindrical drift chamber
with small jet cells (JLC-CDC[2]) is our choice for a candidate central tracking device
to fulfill these requirements. Good track-cluster matching requires, however, small track
extrapolation errors, which in turn demand high r-φ and z resolutions. The latter forces
us to introduce cells consisting of stereo wires, since the z resolution in charge division or
time difference readout is typically 1 % of the wire length or worse, which is a few cm in
the linear collider use.

We have already studied and published hardware aspects of common problems in
designing stereo-wire geometry for a long cylindrical drift chamber with small jet cells[4].
In order to finalize the chamber design so as to achieve the best attainable energy flow
resolution, however, we need to carefully optimize the layout of axial and stereo cells
through detailed Monte Carlo simulations. Considering the recent advance of object-
oriented technology in high energy physics software development, we have thus started
the development of a full Monte Carlo simulator called JUPITER[3] based on Geant4[5].

The axial layers were easy to implement, using a standard Geant4 solid called
G4Tubs, which is a φ segment of a cylinder. On the other hand, there is currently no
official Geant4 solid available to describe stereo cells, which had been a major obstacle for
us to install stereo cells into the full simulator. We have thus extended Geant4 to include
a new solid (TwistedTubs), which comprises three kinds of bounding surfaces: two end
planes, inner and outer hyperboloidal surfaces, and two so-called twisted surfaces that
make slant and twisted φ boundaries. Although TwistedTubs was developed under the
JUPITER environment, it is actually a general purpose Geant4 extension. This paper
describes the design philosophy of TwistedTubs, its realization in the Geant4 framework,
and algorithmic details, together with results of its performance test.

The paper is organized as follows. We begin with a brief account of geometrical
parameters that determine the configuration of a stereo cell, and then review the basic
procedure to add a new solid to Geant4. The subsequent two sections are devoted to de-
scriptions of design philosophy, implementations, and algorithmic details of TwistedTubs,
which is followed by presentation of test results and discussions. Finally section 8 sum-
marizes our achievement and concludes this paper.

2 Geometry of Stereo Mini-jet Cell

In this section we introduce, following the convention of [4], the stereo-geometrical pa-
rameters that will be needed in subsequent sections.

Consider a cylindrical tube consisting of two cylindrical layers of axial field-shaping

1

Twist

Figure 1: An exaggerated illustration of
a stereo cell as formed by twisting an axial
cell.

+
(Z = L/2)

ρ

Z

∆Φ

O
L

A

Y

0
1

A

A

Z = +L/2

X

α

Z = L/2

Φ(z=0) Φ'

Figure 2: 3-dimensional view of a single
stereo wire.

wires strung across two disc-shaped end plates at some radii, ρin and ρout. An axial
mini-jet cell is a segment cut out from this cylindrical tube by φ boundaries formed by
cathode wires. As illustrated in Fig. 1, twisting one end plate by a twist angle ∆φ with
the other end fixed turns the axial mini-jet cell into a stereo mini-jet cell. Inspection of
the figure tells us that the stereo cell consists of three pairs of three kinds of surfaces: a
pair of hyperboloidal surfaces setting inner and outer radial boundaries, another pair of
so-called twisted surfaces making left and right azimuthal boundaries, and yet another
pair of fan-shaped flat surfaces closing the positive and negative z ends of the cell.

By construction, any of the four side walls of the stereo cell can be regarded as a
locus of a stereo wire sweeping through the surface. The geometry of a given side surface
can thus be completely determined by the equation for a single representative wire chosen
from the stereo wires forming that surface. As depicted in Fig. 2, the representative stereo
wire is uniquely specified by the radius at the ends ρ(z = ±L/2) or that at the center
ρc ≡ ρ(z = 0), the projected wire length L to the chamber axis, and the twist angle ∆φ.
Notice that ∆φ is signed and measured from A0 to A1. The stereo angle α, which is
defined as an angle between AA0 and AA1, is also signed, having the same sign as ∆φ.

The stereo angle α can now be written in terms of ρ(z = ±L/2), ∆φ, and the
projected wire length (L):

α = tan−1

(
2ρ(z = ±L/2)

L
sin

(
∆φ

2

))
(2.1)

It is obvious from Fig. 2 that both the azimuthal angle and the radial position of the
stereo wire become z-dependent:

φ(z) = φ(z = 0) + φ′

= φ(z = 0) + tan−1

[(
2z

L

)
tan

(
∆φ

2

)]
(2.2)

2

ρ(z) =
√

(ρ(z = 0))2 + (z tan α)2

=
√

(ρ(z = ±L/2))2 + (z2 − (L/2)2) tan2 α, (2.3)

where z is measured from the middle of the chamber along the chamber axis as Fig. 3
indicates.

Now we consider a hyperboloidal surface obtained as a locus of the straight line
given by Eqs. 2.2 and 2.3 by sweeping φ(z = 0) from φleft to φright with ρ(z = 0) fixed.
Let the outward normal to the hyperboloidal surface at a surface point x = (x, y, z) be n.
Apparently the outward normal n is in the ρ-z plane containing x and is perpendicular to
the tangential vector thereat. Eq. 2.3 tells us that the cross section of the hyperboloidal
surface by the ρ-z plane becomes a hyperbola given by

ρ =
√

(ρ(z = 0))2 + (z tan α)2

z = z.

The tangential vector we need is thus obtained by differentiating this equation with respect
to z. Normalizing it to |x|, we obtain

the tangential vector = (z tan2 α, ρ), (2.4)

which leads to the outward normal in the ρ-z plane: nρ = (ρ,−z tan2 α). Recalling that
ρ in the ρ-z plane corresponds to (x, y) in the x-y plane, we now obtain

n = (x, y,−z tan2 α). (2.5)

The inward normal is anti-parallel with this and can be obtained by simply changing the
signs of all the components.

On the contrary to the hyperboloidal surface, a twisted surface is a locus of the
straight line given by Eqs. 2.2 and 2.3, when ρc ≡ ρ(z = 0) is swept from ρc,in ≡√

ρ2
in − ((L/2) tan α)2 to ρc,out ≡

√
ρ2

out − ((L/2) tan α)2 with φ(z = 0) fixed, where ρin

and ρout are the inner and outer radii at the end planes as defined before. By construction,
any point on such a twisted surface can be specified by two parameters (ρc and z) in a
local coordinate system for which x-axis is chosen such that φ(z = 0) = 0, as depicted in
Fig. 4:

x = ρc

y = ρc tan φ′ = ρc κ z
z = z,

(2.6)

where tan φ′ is given, through Eq. 2.2, by

tan φ′ =
2z

L
· tan

(
∆φ

2

)
(2.7)

3

y

y

z α

z

ztanα

φ'

ztanαρz=0

p(x, y, z)

p(x, y, z)

o
p0

o

x

Figure 3: Hyperboloidal surface
and a typical line (wire) contained
in it.

ρc
x

y

y

z

L

∆φ

φ'

p(x,y,z)

p(x,y,z)

A B

A'
B'

A'
B'

A
B

Figure 4: Similar picture to Fig. 3
for a twisted surface.

while κ is defined to be

κ ≡ 2

L
· tan

(
∆φ

2

)
. (2.8)

Notice that the ∆φ must be smaller than π, implying that ρc > 0 in this coordinate
system. Eq. 2.6 shows that, in addition to the lines corresponding to cathode wires,
the twisted surface contains another kind of straight lines that appear as the sections of
different z-slices of the twisted surface. Each of these lines corresponds to a φ boundary
of a z-slice of a stereo cell and passes through the z-axis. At the point x on the surface, a
pair of these two kinds of straight lines passing through it divides the tangential directions
at that point into four regions: the surface turns from convex to concave or vice versa as
crossing the boundaries. In other words, the twisted surface has a saddle shape2.

The two kinds of straight lines contained in the twisted surface are useful when we
construct a normal to the twisted surface as we shall see below. In general a normal to
the surface at a given surface point x = (x, y, z) can be formed as a vector product of two
linearly independent tangential vectors at that point. In our case such tangential vectors

2It is well known that the hyperboloidal surface has also a saddle shape. In this case, the two straight
lines over which the curvature changes its sign are in the directions of stereo angles of ±α.

4

can be readily obtained by partially differentiating Eq. 2.6 with respect to x = ρc and z:

ez ≡

∂x
∂z
∂y
∂z
∂z
∂z

 =

0
ρcκ
1

ex ≡

∂x
∂x
∂y
∂x
∂z
∂x

 =

1
κz
0

 .

(2.9)

The first of the above two tangential vectors, ez, can virtually be identified as one of the
cathode wires forming the twisted surface. On the other hand, the second one, ex can
be viewed as a φ boundary of a z-slice of a stereo cell. Using Eq. 2.9, we can now easily
form the surface normal at the surface point x by taking the vector product of these two
tangential vectors.

Armed with the equations given in this section, we shall, in the next two sections,
prepare classes to represent the three kinds of surfaces: J4HyperboloidalSurfaces,
J4TwistedSurfaces, and J4FlatSurfaces, and assemble them to form a Geant4 solid
class (J4TwistedTubs) to describe our stereo mini-jet cells of JLC-CDC.

3 How to Add a New Solid to Geant4

According to Geant4 User’s Guide for Toolkit Developers[5], every Geant4 solid has to
inherit from a base class called G4VSolid. This base class has the following pure virtual
functions:

G4VSolid

G4double DistanceToIn(const G4ThreeVector &p)

to calculate the minimal (or shorter) distance to the solid from an outside point (p),

G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v)

to calculate the exact distance from the outside point p in the direction of a velocity
vector v to the solid,

G4double DistanceToOut(const G4ThreeVector &p)

to calculate the minimal (or shorter) distance to the solid from an inside point p,

G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v,

const G4bool calcNorm=FALSE, G4bool *validNorm=0, G4ThreeVector *n)

to calculate the exact distance from the inside point p to the solid along a velocity
vector v,

G4ThreeVector SurfaceNormal(const G4ThreeVector &p)

which returns the outward unit normal at a surface point p (or, if p is not on the
surface, at the surface point that is the closest from p),

5

EInside Inside(const G4ThreeVector &p)

to judge whether a space point p is inside, or outside, or on the surface of the solid
and returns kInside, or kOutside, or kSurface, accordingly,

G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit,

const G4AffineTransform &pTransform, G4double &pMin, G4double &pMax) const

to calculate minimum and maximum extents (pMin and pMax) of the solid in the di-
rection of a given coordinate axis pAxis within the limits specified by pVoxelLimit

under an Affine transformation pTransform, and

G4GeometryType GetEntityType() const

to identify geometry type of the solid (necessary for persistency and STEP interface,
but otherwise unused).

The first five involve surfaces that bound the solid and can be calculated on a surface-by-
surface basis. On the other hand the remaining three require information of the solid as a
whole. Any new user defined solid thus has to be equipped with these functions. Geant4
also provides BREPS3 classes for the purpose of constructing a solid from boundary
surfaces. BREPS are, however, primarily designed to facilitate implementation of a solid
with a complicated shape through interface like STEP to a CAD system. Since the stereo
cell geometry can be handled analytically as explained in the subsequent sections, we
decided to develop a new dedicated solid class for it.

4 Design of J4TwistedTubs

Before coding our new solid ”J4TwistedTubs”, we set the following guide line to fulfill
the required functionality discussed in the last section:

1. J4TwistedTubs should be implemented as a collection of bounding surfaces. It will
thus have to have, as its data member, an array of pointers to the instances of the
corresponding surface classes.

2. All of these surface classes must inherit from an abstract class named ”J4VSurface”,
which carries generic information on each surface and sets basic interfaces to all the
surface classes that inherit from it.

3. Each surface is orientable and should know which side is outside, but the calculation
of the distance to the surface from a point p should not depend on whether the point
is inside or outside of the solid, since the distance should only depend on the shape
of the surface in question.

4. It is then the role of ”DistanceToIn” or ”DistanceToOut” methods of its parent
J4VSurface class to judge the distance depending on the context such as the angle
between the surface normal and the velocity vector v. This way, we can avoid
repetition of the same code.

3Boundary REPresented Solid.

6

J4TwistedTubs

DistanceToIn(p, v)
DistanceToIn(p)
DistanceToOut(p, v)
DistanceToOut(p)
SurfaceNormal(p)
Inside(p)

J4VSurface* fSurface[6]

J4VSurface

DistanceToIn(p, v)
DistanceToOut(p, v)
DistanceTo(p)
SurfaceNormal(p)
virtual DistaceToSurface(p, v) =0
virtual DistaceToSurface(p) =0

J4VSurface *fNeighbours[4]
G4int fHandedness
G4ThreeVector fTranslate
G4RotationMatrix fRot

J4TwistedSurface

DistanceToSurface(p, v)
DistanceToSurface(p)
GetNormal(p)
GetAreaCode(p)

G4double fKappa

J4FlatSurface

DistanceToSurface(p, v)
DistanceToSurface(p)
GetNormal(p)
GetAreaCode(p)

G4ThreeVector fNormal

J4HyperbolicSurface

DistanceToSurface(p, v)
DistanceToSurface(p)
GetNormal(p)
GetAreaCode(p)

G4double fKappa
G4double fR0

1 11

2 22

Figure 5: A class diagram in UML of
J4TwistedTubs

fOrientation = 1

fOrientation = -1

fOrientation = 1

fOrientation = -1

fOrientation = 1

fOrientation = -1

Figure 6: Values of
fOrientation data member
of J4TwistedTubs

5. All J4TwistedTubs has to do will then be to simply invoke ”DistanceToIn” or
”DistanceToOut” for each of the bounding surfaces and choose the best4. The sur-
face normal can then be calculated by calling the corresponding GetNormal method
for the selected surface.

As described in section 2, J4TwistedTubs consists of three pairs of three kinds of sur-
faces. We named these three kinds of bounding surfaces J4HyperboloidalSurface,
J4TwistedSurface, and J4FlatSurface, all of which are descendants of J4VSurface.
Interrelation of these classes is illustrated in Fig. 5 as a class diagram. On the other
hand, Fig. 6 shows the outward direction of each surface as stored in a data member
called fOrientation.

As sketched above, the abstract base class J4VSurface has the following methods:

J4VSurface

G4int DistanceToSurface(const G4ThreeVector &p, G4ThreeVector *xx,

G4double *distance, G4int *areacode) = 0

which calculates the distance (*distance) from a point p to the surface as well as
the point (*xx) of the closest approach to the surface and an *areacode given by
GetAreaCode explained below, and then returns the number of the points of closest
approach that is always 1.

4The best is usually the one that returned the shortest distance. One exception is the case in which
a particle is coming into the solid from a corner or edge of the solid.

7

G4int DistanceToSurface(const G4ThreeVector &p, const G4ThreeVector &v,

G4ThreeVector xx[], G4double distance[], G4int areacode[],

G4bool isvalid[], EValidate validate) = 0

which calculates the distance(s) (distance[]) along the velocity vector v to the
surface from the point p, the intersection(s) (xx[]) of the particle track with the
surface, and the areacode(s) (areacode[]) of intersection(s), and then returns the
number of intersections. If so flagged by validate, it does boundary check for each
of the candidate intersection(s) and passes the test result through isvalid[]. The
return value then becomes the number of valid intersection(s).

G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isglobal) = 0

which calculates and returns the normal at a surface point xx. The surface point
xx and the normal to be returned are assumed to be given in the coordinate system
of its mother solid or in the local frame of the surface in question, depending on
whether isglobal is TRUE or not, respectively.

G4Int GetAreaCode(const G4ThreeVector &xx, G4bool withTol) = 0

which decides whether the intersection xx given by DistanceToSurface(p,v) is
on a boundary, or at a corner, or inside or outside of the surface with or without
tolerance as flagged by withTol, and then returns a corresponding area code.

G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v,

G4ThreeVector &xx)

which invokes DistanceToSurface(p,v) of its descendant concrete class and judges
the validity of each of the resultant intersection(s) and the corresponding distance(s),
examining the sign of the distance, the angle of the particle velocity v to the surface
normal at the intersection point on the surface. If the intersection is on a boundary
or at a corner of the surface, it also checks the angle to the surface normal(s) of
the adjacent surface(s). It then returns the distance if valid, or infinity otherwise,
together with the valid intersection xx, if any.

G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v,

G4ThreeVector &xx)

which invokes DistanceToSurface(p) of its descendant concrete class and judges
the validity of each of the resultant intersections(s) and the corresponding dis-
tance(s), taking into account the sign of the distance and the angle between the
surface normal and the particle velocity v, and then returns the distance to the
caller if valid, or infinity otherwise, with the valid intersection passed through xx,
if any.

G4double DistanceTo(const G4ThreeVector &p)

which just passes the return value of DistanceToSurface(p) without any additional
judgment. This functions is used in DistanceToIn(p) or DistanceToOut(p) of
J4TwistedTubs.

8

Notice that the first four of these member functions are pure virtual and should
be implemented in its derived concrete classes. Since we have already explained how to
construct a surface normal in section 2 and since description of GetAreaCode would only
involve technical details, we will concentrate, in what follows, on how we implemented
the base class J4VSurface and the first two that are the DistanceToSurface functions
with and without the particle velocity, for each of the three derived surface classes:
J4HyperboloidalSurface, J4TwistedSurface, and J4FlatSurface.

5 Algorithm and Implementation

5.a J4VSurface

Being the base class for all the surface classes that make J4TwistedTubs, the J4VSurface
class plays the following four major roles: (1) it carries data members to store generic
information on a surface, (2) it standardizes interface for generic methods to be imple-
mented by its descendant, (3) it provides tools commonly used by any derived surface
class, and (4) it steers the distance calculation in DistanceToIn and DistanceToOut, by
filtering the return values from DistanceToSurface of its derived class. We now describe
these points below in some more detail.

5.a.1 Generic Data Members

J4VSurface has the following protected data members to store generic information on its
derived surface class.

• Two axes of the surface

• Maximum and minimum limits of the surface along the two axes

• The rotation matrix and the translation vector to transform the surface from its
mother solid (J4TwistedTubs) coordinate system to the local frame attached to the
surface

• The last value of the distance to the surface from a point p

• The last value of the surface normal

On the other hand, the next five data members are private, since they are basically used
internally by J4VSurface:

• Four pointers to neighboring surfaces

• Four positions of the corner points

• An instance of a local class that stores information on the four boundary line seg-
ments

9

• The name of the surface

• A pointer to its mother solid (J4TwistedTubs)

Notice that J4VSurface currently assumes the existence of four corners and consequently
four boundary line segments for its derived surface class. It is, however, relatively easy to
extend it to support variable number of neighboring surfaces.

5.a.2 Common Utility Functions

G4double DistanceToLine(const G4ThreeVector &p, const G4ThreeVector &x0,

const G4ThreeVector &d, G4ThreeVector &xx)

to calculate the distance from a point p to a line specified by a reference point x0 on
it and the line direction vector d, together with the point xx of the closest approach
on the line. It then returns the distance.

G4double DistanceToPlane(const G4ThreeVector &p, const G4ThreeVector &x0,

const G4ThreeVector &n0, G4ThreeVector &xx)

to calculate the distance from p to a plane specified by a normal n0 and a reference
point x0 on it, together with the point xx of the closest approach to the surface. It
then returns the distance.

G4double DistanceToPlane(const G4ThreeVector &p, const G4ThreeVector &x0,

const G4ThreeVector &t1, const G4ThreeVector &t2, G4ThreeVector &xx,

G4ThreeVector &n)

to calculate the distance from p to a plane and the point xx of the closest approach
to the plane, where the plane is specified by a reference point x0 and two linearly
independent vectors t1 and t2 on the plane. It then returns the distance.

G4double DistanceToBoundary(G4int areacode, G4ThreeVector &xx,

const G4ThreeVector &p)

to calculate the distance from p to a boundary specified by areacode, and the point
xx of the closest approach to the boundary. Its return value is the distance.

G4int AmIOnLeftSide(const G4ThreeVector &me, const G4ThreeVector &ref,

G4bool withTol)

to judge relation between two vectors me and ref by comparing their φ angles. If
me lies clearly on the left side of ref, namely me has a φ angle smaller than that
of ref, it returns 1. If withTol is TRUE and if me lies within ±0.5×kAngTolerance
(= 0.5× 10−9) radians of ref, it returns 0. Otherwise, it returns -1.

5.a.3 DistanceToIn and DistanceToOut

DistanceToIn(p,v)

On invocation, DistanceToIn(p,v)5 proceeds according to the following algorithm:
5In what follows, we often leave out arguments which are irrelevant in the explanation of algorithmic

10

1. Initialize a temporary data buffer to store the current best distance and intersection
to kInfinity.

2. Then call DistanceToSurface(p,v) and get a set of distance(s) (D) and intersec-
tion(s) (X): the number of intersections is at most 2 in our case.

3. If a candidate D and its corresponding X satisfy the following conditions, discard
this candidate and move on to the next, if any:

• D is negative, or

• the scalar product between the outward surface normal at X and the particle
velocity v is positive, or

• X is outside of the surface.

4. If X is inside of the surface and if D is smaller than the last value stored in the
temporary data buffer defined in step 1, update the stored D and X and move on
to the next intersection, if any.

5. If X is on the boundary of the surface within ±0.5×kCarTolerance(= 0.5× 10−9),
we need to judge whether the particle is really entering the solid or just grazing the
solid and flying away. In this case, invoke the DistanceToSurface(p,v) method of
the (two) neighboring surface(s) (two if the intersection is at a corner, one otherwise)
and get a set of distance(s) (D′) and intersection(s) (X′), and if X′ satisfies the
following conditions, exit DistanceToIn immediately by returning kInfinity as
the distance to the surface originally in question.

• If X′ is inside of a neighboring surface6, or

• if the X′ is on the same boundary (or at the same corner) as X and if the
scalar product of the outward surface normal at X′ and the particle velocity v

is positive7.

6. If X survives all the tests for all the neighboring surfaces, check whether the current
D is smaller than that stored in the temporary data buffer, and if so, update the
stored D and X.

7. Return the stored distance in the temporary data buffer.

The flow chart of DistanceToIn is shown in Fig. 7.

DistanceToOut(p,v)

On the other hand, the algorithm for DistanceToOut(p,v) is less complicated as
described below:

aspects of each function, as long as there is no possibility of confusion.
6In this case this neighboring surface should be the one through which the particle enters the solid.
7A particle cannot come into a solid from the edge (or corner) if the scalar product is positive for any

of the surfaces forming the edge (or corner).

11

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

i = 0; best = kInfinity;
nx = DistanceToSurface
 D[nx], X[nx], etc.
 (nx: number of X)

i < nx

distance[i] < 0

X[i] is kInside

A

D[i] < best

Loop Bbest = D[i]

i++

return best

normal * v > 0

X[i] is kOutside
Yes

No

B

j = 0;
nsurf = GetNeighborSurfaces()
(nsurf: number of neighbour
 surfaces at present boundary
 1: boundary, 2: corner)

j < nsurf

Yes

No
D[i] < best

best = D[i]

Loop C

C

No

Yes

Yes
Yes

Yes

No

No
No

k < nx'

X'[k] is kInside

normal * v < 0

X'[k] is same
side of X[i]

k++

k = 0;
nx' = DistanceToSurface
 D'[nx], X'[nx], etc.
 (nx': number of X')

return kInfinity

Figure 7: Flow chart of DistanceToIn

12

1. Initialize a temporary data buffer to store the current best distance and intersection
to kInfinity.

2. Call DistanceToSurface(p,v) and get a set of distance(s) (D) and intersection(s)
(X): the number of intersections is at most 2 in our case.

3. If D and X meet the following conditions, reject this candidate and move on to the
next:

• D is negative, or

• the scalar product of the outward surface normal at X and the particle velocity
v is negative, or

• X is outside of the surface.

4. If D is smaller than the stored value in the temporary buffer, update the stored D
and X.

5. Return the best distance stored in the temporary buffer.

DistanceTo(p)

DistanceTo(p), which is called by the DistanceToIn(p) and DistaceToOut(p) meth-
ods of J4TwistedTubs, just returns DistanceToSurface(p) which is implemented in the
derived surface class.

5.b J4HyperboloidalSurface

Geant4 provides a solid class called G4Hype to represent a hyperboloidal volume with
its symmetry axis parallel to the z-axis. Since J4HyperboloidalSurface follows the
basic algorithm to calculate the inward or outward normal and the minimal distance to a
hyperboloidal surface, we only sketch it here.

5.b.1 DistanceToSurface(p, v)

The distance to a hyperboloidal surface along a velocity v = (vx, vy, vz) from a point
p = (px, py, pz) can be obtained as follows. Define the intersection of a particle track with
the hyperboloidal surface to be X = p + tv = (px + tvx, py + tvy, pz + tvz), where t, the
time, equals the distance we want, provided that v is normalized to unity. From Eq. 2.2,
we then have a quadratic equation for t:

(px + tvx)
2 + (py + tvy)

2 = r2
z=0 + (pz + vz)

2 tan2 α. (5.10)

13

X2

X1
pz1

z2

O

Q

ρ

z
From OutsideR

pρ

ρ = z tanα

α

αX

Figure 8: Distance from outside

β

X1

p
z1

O ρ

z

pρ X1ρ

From Inside
dρ / dz = z tan2α / ρ

X2

X

Figure 9: distance from inside

5.b.2 DistanceToSurface(p)

DistanceToSurface(p) is to calculate the minimum distance to the surface in question.
Since this function is primarily used to set the safety radius not to cross any volume
boundaries, it is allowed to underestimate the minimum distance. In the calculation of
this minimum distance we can thus approximate the surface curve by a properly chosen
straight line. Taking advantage of z-symmetry, we only have to consider the region of
z ≥ 0.

Distance from Outside

In this case, the proper line can be chosen in the following way:

1. Find the surface point (X1) which has the same z as p.

2. Draw a line from p which is perpendicular to the asymptotic line ρ = z tan α and
let their intersection be Q.

3. Find the surface point (X2) that has the same z as Q.

4. Connect X1 and X2

Then, by construction, the distance from p to the line X1X2 never exceeds the mini-
mum distance to the hyperboloidal surface. The z component of X2 can be obtained
geometrically from Fig. 8:

z2 = OQ cos α
OQ = OR cos α
OR = z1 + pρ tan α. (5.11)

Distance from Inside

In this case, a proper line will be the tangential line at the surface point X1 which has
the same z component as p (see Fig. 9). The tangential vector is given by Eq. 2.4.

14

5.c J4FlatSurface

5.c.1 DistanceToSurface(p, v)

The distance to a plane along a velocity vector v from a point p is readily obtained from

t = −n · (p− x0)/|n|, (5.12)

where n is the normal to the plane and x0 is the reference point on the plane.

5.c.2 DistanceToSurface(p)

Since the two planar boundary surfaces of J4TwistedTubs are perpendicular to the z-
axis, which means its normal is in the direction of the z-axis. All DistanceToSurface(p)
has to do is simply to return the difference between z-components of p and the plane in
question.

5.d J4TwistedSurface

5.d.1 DistanceToSurface(p, v)

The distance to a twisted surface from a point p = (px, py, pz) along a velocity vector
v = (vx, vy, vz) can be obtained in a similar manner to that for J4HyperboloidSurface.
Substituting X = (Xx, Xy, Xz) = p + tv in Eq. 2.6, we have the following quadratic
equation:

(κvxvz)t
2 + ((vxpz + vzpx)κ− vy)t + κpxpz − py = 0 (5.13)

for the distance t to the surface.
Notice that, although this quadratic equation may contain a solution for which

Xx = ρc < 0, such a situation should not take place in practice, since the twist angle
cannot exceed ∆φ = π without breaking wires. This requires Xx = ρc in Eq. 2.6 be
positive. Notice also that, for a given stereo angle, the twist angle ∆φ increases with the
wire length. In solving Eq. 5.13, we thus need to set limits on z as determined by the
endcap locations. These validity checks can be made for the obtained crossing point X
after solving the above equation.

5.d.2 DistanceToSurface(p)

The exact equation for the minimal distance to the twisted surface from a point p is
biquadratic. As in the case of J4HyperboloidalSurface, what we really need is, however,
not the exact minimal distance. Its approximation will do, provided that it never exceeds
the true minimal distance. We thus developed an approximation method that uses the
distance to an appropriately chosen plane instead of solving the exact equation. Now
the question is how we find such a plane to approximate the twisted surface. Fig. 10
illustrates the procedure to find it.

Since we should never overestimate the distance, the plane has to lie on the same
side as the point p with respect to the twisted surface, at least in the vicinity of the

15

p

A
B

C

D

A

B

C

D

p

A
B

C

D

p

I

II M

N

l
l

M
N

B
C

A
D

II'

l

l

B
C

A
D

I' i)
ii)

iii)iv)

i)

ii)

iv)

iii)

mn

n

m

m
n

m

n

m
n

Figure 10: Procedure to choose an appropriate plane to approximate the minimum dis-
tance to the twisted surface

16

point of the closest approach to the plane. In order to fulfill this condition, essential is
the following observation about the geometric features of the twisted surface. As stressed
in section 2 the twisted surface contains two kinds of straight lines given by ez and ex

in Eq. 2.9: one that can be regarded as one of the field wires making up the twisted
surface and the other that can be taken as a φ boundary of a z-slice of a stereo cell. Lines
AD and BC of Fig. 10 are the first type (ez-type), while AB and DC are the second
type (ex-type). We can thus cut out, from the twisted surface, a segment ABCD that is
bounded by four straight lines. Recall that this segment has a saddle shape: it is concave
along the diagonal AC in Fig. 10, while it is convex along the other diagonal BD8.

Our goal is to choose a plane that is placed in front of both the current point p and
the twisted surface and to calculate the distance to that plane. Once we find a diagonal
which does not cross the twisted surface, we can immediately span a plane with the
diagonal and an adjacent side (AB or DC) which is entirely lies on the surface9. Hence
our first task is to select an appropriate diagonal along which the surface is concave. The
procedure in DistanceToSurface(p) to select such a diagonal can be itemized as follows:

1. Let A and C be the points of the closest approach from the point p to the inner
and outer boundary lines (m and n in Fig. 10-I). If the z components of A and C
do not sandwich the z component of p, move A or C along the boundary lines until
its z component matches that of p.

2. Choose D and B on lines m and n, respectively, in such a way that lines AB and DC
are perpendicular to the z-axis and thus entirely contained in the twisted surface.

3. First check if diagonal AC satisfies our requirement by examining the sign of product
of the following three test variables:

(a) the signed twist angle ∆φ,

(b) an orientation index, which is 1 if p is on the negative φ side of the twisted
surface, 0 if p is on the surface within ±0.5×kAngTolerance (= 0.5 × 10−9)
radians, and -1 otherwise, and

(c) the z coordinate of A minus that of C.

If the product is positive, accept the diagonal. If it is 0, which means either (b)
is 0 or (c) is 0. If (b) is 0, p is on the surface (or is very close to the surface). In
this case, immediately exit DistanceToSurface(p) by returning 0 as the minimal
distance to the twisted surface. Else if (c) is 0, return the distance to line AC from
p. Finally if the product turns out to be negative, which means that the diagonal is
invalid crossing the twisted surface, exchange A and D, and C and B, respectively.

Diagonal AC can now be used to set up two planes: plane ADC and ABC. The normal
to these planes are indicated in Fig. 10-I, and should point into the hemisphere that

8Of course, which is convex or concave flips, depending on from which side you are looking.
9Remember the twisted surface can also be regarded as a locus of line AB in Fig. 4.

17

contains p. The subsequent distance calculation has two branches, depending on the
relative location of p with respect to these two candidate planes.

Case A: p is in region i), or ii), or iii) of Fig. 10-I’

In these cases, all DistanceToSurface(p) needs to do is to return the smallest positive
distance.

Case B: p is in region vi) of Fig. 10-I’

In this case, we must re-define the planes so that at least one of them lies behind point
p. Let M and N be the middle points of AB and CD, respectively. Since line MN is
fully contained in the twisted surface, we can now define new quadrangles ADNM and
MNCB. We can then define four planes ADN , AMN , MNC, and MBC. Planes ADN
and MBC, however, coincide with ADC and ABC, respectively, and have hence been
tested already. Therefore, we just have to test the remaining two planes. Again there are
two cases to consider, depending on the relative location of point p with respect to the
planes (see Fig. 10-I’),

Case B-1: p is in region i) of Fig. 10-II’
In this case, DistanceToSurface(p) should just return the smaller of the distance
to AMN and that to MNC.

Case B-2: p is in region ii) or iii) of Fig. 10-II’
In these cases, the situation is essentially the same as in iv) of Fig. 10-I’. Compare
the distances to AMN and MNC and split into two the one that gave a negative
distance.

Notice that, by construction, p must not fall into region iv) of Fig. 10-II’. If it happens,
therefore, we just abort the program.
The procedure for B-2 is actually implemented as a recursive call: J4TwistedSurface is
equipped with its own DistanceToPlane, which calls itself recursively until the situation
changes to B-1 and returns a positive distance. In this way DistanceToSurface can get
the desired distance by a single call to DistanceToPlane, when case B takes place.

6 Test of J4TwistedTubs

In order to test the new solid class J4TwistedTubs, we prepared a test program (for stereo
cells) as follows. We first constructed a world volume with a cubic shape of 6m × 6m
× 6m and put, at its center, a cylindrical tube-type layer with inner and outer radii of
30cm and 130cm, respectively, and a length of 260cm. In this cylindrical layer, we placed
a J4TwistedTubs object, which has a twist angle (∆φ) and a φ-width of π/3, inner and
outer radii at the endcaps of 50cm and 100cm, respectively, and a z-length of 200cm. Into
this mother J4TwistedTubs volume, installed were two daughter J4TwistedTubs objects

18

26
0c

m

20
0c

m

100cm

130cm

Figure 11: Schematic view of the test geometry

which have half the φ-width but otherwise the same geometry. All of these volumes are
made of air. A schematic view of the test geometry is shown in Fig. 11.

In order to evaluate the computing speed of J4TwistedTubs, we also prepared an-
other test program (for axial cells) with the mother and the two daughter J4TwistedTubs
objects replaced by ordinary cylindrical tubs (G4Tubs).

6.a Test with Geantinos

Geant4 provides a hypothetical particle called ”geantino” designed primarily for geometry
tests. A geantino does not interact with any materials and flies along a straight line
trajectory. It only makes a hit when it crosses a boundary of volumes which are sensitive10.
We first carried out a geantino test of J4TwistedTubs, using the aforementioned geometry
test program with only the daughter J4TwistedTubs objects made sensitive. Fig. 12 is
a 3-dimensional view of hit points made by 10000 geantinos injected from 4π steradian
around the surrounding cylinder. As seen from the figure all the hit points are correctly
on the surface of the daughter J4TwistedTubs volumes.

6.b Test with Higgs Events

Unlike geantinos, a real charged particle makes a curved trajectory in a central tracker
due to the magnetic field applied to it, and interacts with various detector materials,
producing, for instance, low energy tracks such as δ-rays which might complicate the
particle tracking through the detector volumes. In order to stress-test our J4TwistedTubs

10Geant4 generates a hit when (1) a physics process took place on a flying particle or (2) its track
crossed a boundary of a volume registered as a sensitive detector.

19

Figure 12: 3-dimensional view of hit points of geantinos on the daughter J4TwistedTubs
volumes

Figure 13: x-z view Figure 14: x-y view

20

under more realistic environment, we also tried Higgs events (e+e− → ZH at
√

s =
350 GeV) generated by Pythia[6]. In this case, the number of tracks with a transverse
momentum of 1 GeV or greater is around 50 per event. Because of the lack of a calorimeter
in this test program, however, relatively low energy tracks curl up and pass through
the sensitive volumes multiple times. Taking into account this curl-up effect and the
geometrical acceptance of the J4TwistedTubs volumes being about (π/3)/(2π) = 1/6,
the average number of tracks passing through the twisted volumes was estimated to be
around 10 per event. Processing of 1000 Higgs events, which thus correspond to roughly
10000 tracks hitting the sensitive volumes, took 11647 seconds on a Power Macintosh
800MHz (Dual CPU) with 1GB memory for the J4TwistedTubs test program. The same
test took 9242 seconds on the same platform for the axial cell test program. The 25%
extra CPU time consumed by J4TwistedTubs is acceptable for our purpose, considering
the expected CPU time necessary for calorimeter simulation.

7 Discussion

So far we treated the twisted surface analytically in J4TwistedSurface. We found, how-
ever, Eq. 5.13, which is the key equation for our analytic treatment, suffers from roundoff
errors in the situation sketched below.

In general a roundoff error enters as a result of a subtraction of two numbers that
share many common digits. In the case of J4TwistedSurface, this happens when vx or
vz or both become small, and consequently the second term of the discriminant of the
quadratic equation Eq. 5.13 becomes negligible. Geometrically vx = 0 corresponds to an
extreme case in which the velocity vector of the particle is contained in a plane that is
spanned by a straight line in the direction of a wire and another straight line which is
parallel with the z-axis. On the other hand, vz = 0 is the case in which the velocity vector
is in the plane that is perpendicular to the z-axis. In both of these cases, the problem
becomes purely 2-dimensional and hence the equation becomes linear.

When the quadratic equation is used in such a case, DistanceToSurface(p, v)

might return a crossing point that falls short of or goes beyond the surface by more than
kCarTolerance. The next step might then end up with an impossible situation where
DistanceToIn (DistanceToOut) would be called from inside (outside) of the volume,
confusing the tracking program in Geant4.

When the calculated crossing point (Xorig in Fig. 15) is found to be more than
kCarTolerance-off the surface, we apply the following Newtonian method in order to
avoid such inconsistency. We first approximate the twisted surface, at the surface point
that has the same local x and z coordinates (Xsurf), by a tangential plane spanned by
two straight lines contained in the twisted surface: one in the wire direction and the other
in the radial direction. We then recalculate the crossing point (Xnew) with this tangential
plane. We iterate this procedure until the recalculated crossing point is found on the
surface within the tolerance.

21

x

y

z

Xorig

Xnew

Xsurf

l1

l2

Figure 15: Procedure to fix the estimated intersection (Xorig) when it falls short of the
surface due to a roundoff error. The surface point (Xsurf) has the same x and z coordinates
as Xorig. We approximate the twisted surface by the tangential plane at Xsurf , which
is spanned by two straight line sections l1 and l2, and calculate a new crossing point
(Xnew) with this plane. In the limit of vz = 0 or vx = 0, for which the numerical
instability is expected, the new intersection will be on l2 or l1, respectively, and therefore
the approximation will become exact.

22

8 Summary and Conclusion

We have developed a new Geant4 solid called J4TwistedTubs in order to handle stereo
mini-jet cells of a cylindrical drift chamber like JLC-CDC. This new solid consists of three
kinds of surfaces, each of which is represented respectively by J4HyperboloidalSurface,
J4FlatSurface, and J4TwistedSurface. These three surface classes correspond to inner
and outer hyperboloidal surfaces, two end planes, and two so-called twisted surfaces that
make slant and twisted φ-boundaries, respectively.

There has been no Geant4 object for the twisted surface. In this paper, we have
thus explained the algorithmic details of our new surface class (J4TwistedSurface) for
it. It should also be emphasized that all of these three surface classes are derived from
a single base class called J4VSurface, which greatly facilitated the distance and surface
normal calculations.

We have implemented stereo cells with the new solid, and tested them using geanti-
nos and Pythia events (e+e− → ZH at

√
s = 350 GeV). The stereo cells consumed 25%

more CPU time than ordinary axial cells did. We found this acceptable, considering the
expected CPU time necessary for calorimeter simulation.

Acknowledgments

The authors would like to thank A. Miyamoto, T. Aso, N. Khalatyan, R. Kuboshima,
and other members of the JLC-Software and JLC-CDC groups for useful discussions and
helps. They are also grateful to Geant4 users group and developers. In particular, a
discussion with G. Cosmo was very useful for one of the authors.

References

[1] JLC group, KEK Report 92-16, December, 1992.

[2] ACFA Linear Collider Working Group, KEK Report 2001-11, August (2001),
http://www-jlc.kek.jp/subg/offl/jim/index-e.html

[3] Proceedings of the APPI Winter Institute, KEK Proceedings 2002-08, July (2002)

[4] N.Khalatyan, K.Fujii, H.Okuno,T.Abe, K.Hoshina, Y.Kato, Y.Kurihara, H.Kuroiwa,
T.Matsui, O.Nitoh, A.Sugiyama, K.Takahashi, T.Watanabe, T.Yoshida, Nucl. Inst.
and Meth. A428 (1999) 403.

[5] http://wwwinfo.cern.ch/asd/geant4/G4UsersDocuments/UsersGuides/
ForToolkitDeveloper/html/index.html

[6] http://www.thep.lu.se/t̃orbjorn/Pythia.html

23

