
Status of JUPITER and Satellites

Kotoyo Hoshina, ACFA− SIM &JLC − CDC

1 Introduction

Experiments at a future linear e+e− collider such as JLC[1] will open up a novel possibility
to reconstruct all the final states in terms of fundamental particles (leptons, quarks, and
gauge bosons). This involves identification of heavy unstable particles such as W , Z, and
t through jet invariant-mass measurements. High resolution energy flow measurements
will thus be crucial, necessitating high resolution tracking and calorimetry as well as
good track-cluster matching to avoid double counting. A large cylindrical drift chamber
with small jet cells (JLC-CDC[2]) is our choice for a candidate central tracking device
to fulfill these requirements. Good track-cluster matching requires, however, small track
extrapolation errors, which in turn demand high r-φ and z resolutions. The latter forces
us to introduce cells consisting of stereo wires, since the z resolution in charge division or
time difference readout is typically 1 % of the wire length or worse, which is a few cm in
the linear collider use.

We have already studied and published hardware aspects of common problems in
designing stereo-wire geometry for a long cylindrical drift chamber with small jet cells[6].
In order to finalize the chamber design so as to achieve the best attainable energy flow
resolution, however, we need to carefully optimize the layout of axial and stereo cells
through detailed Monte Carlo simulations. Considering the recent advance of object-
oriented technology in high energy physics software development, we had thus started the
development of a full Monte Carlo simulator called JUPITER[3] based on Geant4[7] and an
event reconstruction simulator called Satellites[3] based on ROOT[4]/JSF[5]. The philoso-
phies, structures, and main features of these simulators were presented at APPI2001 and
APPI2002.

The CDC in JUPITER that we reported in the past APPI meetings did not have
any stereo layers implemented, since there had been and still is no official Geant4 solid
available to describe stereo cells. This is in contrast with the situation with axial layers for
which Geant4 provides a standard solid called G4Tubs, which is a φ segment of a cylinder.
We have thus extended Geant4 to include a new solid (TwistedTubs), which comprises
three kinds of bounding surfaces: two end planes, inner and outer hyperboloidal surfaces,
and two so-called twisted surfaces that make slant and twisted φ boundaries. The first
half of this talk will thus be devoted to descriptions of this new solid1.

Using this new class, we installed stereo cells into JUPITER and studied the effect of
the stere cells on the CDC’s time stamping capability. Since the maximum drift time of the
CDC will be 7 ' µsec, which is much longer than the bunch train length of 192×1.4 nsec,
all the background tracks from these surrounding bunches would be recorded as signal
event trajectories without any time-stamping capability. The JLC-CDC is equipped with
cells staggered from one layer to another, which provides a time-stamping system. The
past estimate of the time-stamping capability assumed only axial layers and how the
existence of stereo cells would affects it has been an open question. In the latter half of

1Although TwistedTubs was developed under the JUPITER environment, it is actually a general
purpose Geant4 extension. We thus wrote a CPC paper[8] which describes the design philosophy of
TwistedTubs, its realization in the Geant4 framework, algorithmic details, and results of its performance
test. If you are interested in technical details, see [8]

this talk, preliminary results will be shown together with discussions on their implications.

2 Geometry of Stereo Mini-jet Cell

Twist

Figure 1: An exaggerated illustration of
a stereo cell as formed by twisting an axial
cell.

+
(Z = L/2)

ρ

Z

∆Φ

O
L

A

Y

0
1

A

A

Z = +L/2

X

α

Z = L/2

Φ(z=0) Φ'

Figure 2: 3-dimensional view of a single
stereo wire.

In this section we introduce, following the convention of [6], the stereo-geometrical
parameters that will be needed in subsequent sections.

Consider a cylindrical tube consisting of two cylindrical layers of axial field-shaping
wires strung across two disc-shaped end plates at some radii, ρin and ρout. An axial
mini-jet cell is a segment cut out from this cylindrical tube by φ boundaries formed by
cathode wires. As illustrated in Fig. 1, twisting one end plate by a twist angle ∆φ with
the other end fixed turns the axial mini-jet cell into a stereo mini-jet cell. Inspection of
the figure tells us that the stereo cell consists of three pairs of three kinds of surfaces: a
pair of hyperboloidal surfaces setting inner and outer radial boundaries, another pair of
so-called twisted surfaces making left and right azimuthal boundaries, and yet another
pair of fan-shaped flat surfaces closing the positive and negative z ends of the cell.

By construction, any of the four side walls of the stereo cell can be regarded as a
locus of a stereo wire sweeping through the surface. The geometry of a given side surface
can thus be completely determined by the equation for a single representative wire chosen
from the stereo wires forming that surface. As depicted in Fig. 2, the representative stereo
wire is uniquely specified by the radius at the ends ρ(z = ±L/2) or that at the center
ρc ≡ ρ(z = 0), the projected wire length L to the chamber axis, and the twist angle ∆φ.
Notice that ∆φ is signed and measured from A0 to A1. The stereo angle α, which is
defined as an angle between AA0 and AA1, is also signed, having the same sign as ∆φ.

The stereo angle α can now be written in terms of ρ(z = ±L/2), ∆φ, and the

projected wire length (L):

α = tan−1

(
2ρ(z = ±L/2)

L
sin

(
∆φ

2

))
(2.1)

It is obvious from Fig. 2 that both the azimuthal angle and the radial position of the
stereo wire become z-dependent:

φ(z) = φ(z = 0) + φ′

= φ(z = 0) + tan−1

[(
2z

L

)
tan

(
∆φ

2

)]
(2.2)

ρ(z) =
√

(ρ(z = 0))2 + (z tan α)2

=
√

(ρ(z = ±L/2))2 + (z2 − (L/2)2) tan2 α, (2.3)

where z is measured from the middle of the chamber along the chamber axis as Fig. 3
indicates.

Now we consider a hyperboloidal surface obtained as a locus of the straight line
given by Eqs. 2.2 and 2.3 by sweeping φ(z = 0) from φleft to φright with ρ(z = 0) fixed.
Let the outward normal to the hyperboloidal surface at a surface point x = (x, y, z) be n.
Apparently the outward normal n is in the ρ-z plane containing x and is perpendicular to
the tangential vector thereat. Eq. 2.3 tells us that the cross section of the hyperboloidal
surface by the ρ-z plane becomes a hyperbola given by

ρ =
√

(ρ(z = 0))2 + (z tan α)2

z = z.

The tangential vector we need is thus obtained by differentiating this equation with respect
to z. Normalizing it to |x|, we obtain

the tangential vector = (z tan2 α, ρ), (2.4)

which leads to the outward normal in the ρ-z plane: nρ = (ρ,−z tan2 α). Recalling that
ρ in the ρ-z plane corresponds to (x, y) in the x-y plane, we now obtain

n = (x, y,−z tan2 α). (2.5)

The inward normal is anti-parallel with this and can be obtained by simply changing the
signs of all the components.

On the contrary to the hyperboloidal surface, a twisted surface is a locus of the
straight line given by Eqs. 2.2 and 2.3, when ρc ≡ ρ(z = 0) is swept from ρc,in ≡√

ρ2
in − ((L/2) tan α)2 to ρc,out ≡

√
ρ2

out − ((L/2) tan α)2 with φ(z = 0) fixed, where ρin

and ρout are the inner and outer radii at the end planes as defined before. By construction,
any point on such a twisted surface can be specified by two parameters (ρc and z) in a
local coordinate system for which x-axis is chosen such that φ(z = 0) = 0, as depicted in
Fig. 4:

x = ρc

y = ρc tan φ′ = ρc κ z
z = z,

(2.6)

where tan φ′ is given, through Eq. 2.2, by

tan φ′ =
2z

L
· tan

(
∆φ

2

)
(2.7)

while κ is defined to be

κ ≡ 2

L
· tan

(
∆φ

2

)
. (2.8)

Notice that the ∆φ must be smaller than π, implying that ρc > 0 in this coordinate
system. Eq. 2.6 shows that, in addition to the lines corresponding to cathode wires,
the twisted surface contains another kind of straight lines that appear as the sections of
different z-slices of the twisted surface. Each of these lines corresponds to a φ boundary
of a z-slice of a stereo cell and passes through the z-axis. At the point x on the surface, a
pair of these two kinds of straight lines passing through it divides the tangential directions
at that point into four regions: the surface turns from convex to concave or vice versa as
crossing the boundaries. In other words, the twisted surface has a saddle shape2.

The two kinds of straight lines contained in the twisted surface are useful when we
construct a normal to the twisted surface as we shall see below. In general a normal to
the surface at a given surface point x = (x, y, z) can be formed as a vector product of two
linearly independent tangential vectors at that point. In our case such tangential vectors
can be readily obtained by partially differentiating Eq. 2.6 with respect to x = ρc and z:

ez ≡

∂x
∂z
∂y
∂z
∂z
∂z

 =

0
ρcκ
1

ex ≡

∂x
∂x
∂y
∂x
∂z
∂x

 =

1
κz
0

 .

(2.9)

The first of the above two tangential vectors, ez, can virtually be identified as one of the
cathode wires forming the twisted surface. On the other hand, the second one, ex can
be viewed as a φ boundary of a z-slice of a stereo cell. Using Eq. 2.9, we can now easily

2It is well known that the hyperboloidal surface has also a saddle shape. In this case, the two straight
lines over which the curvature changes its sign are in the directions of stereo angles of ±α.

y

y

z α

z

ztanα

φ'

ztanαρz=0

p(x, y, z)

p(x, y, z)

o
p0

o

x

Figure 3: Hyperboloidal surface
and a typical line (wire) contained
in it.

ρc
x

y

y

z

L

∆φ

φ'

p(x,y,z)

p(x,y,z)

A B

A'
B'

A'
B'

A
B

Figure 4: Similar picture to Fig. 3
for a twisted surface.

form the surface normal at the surface point x by taking the vector product of these two
tangential vectors.

Armed with the equations given in this section, we shall, in the next section,
prepare classes to represent the three kinds of surfaces: J4HyperboloidalSurfaces,
J4TwistedSurfaces, and J4FlatSurfaces, and assemble them to form a Geant4 solid
class (J4TwistedTubs) to describe our stereo mini-jet cells of JLC-CDC.

3 Design of J4TwistedTubs

Before coding our new solid ”J4TwistedTubs”, we set the following guide line to fulfill
the required functionality:

1. J4TwistedTubs should be implemented as a collection of bounding surfaces. It will
thus have to have, as its data member, an array of pointers to the instances of the
corresponding surface classes.

2. All of these surface classes must inherit from an abstract class named ”J4VSurface”,
which carries generic information on each surface and sets basic interfaces to all the
surface classes that inherit from it.

3. Each surface is orientable and should know which side is outside, but the calculation
of the distance to the surface from a point p should not depend on whether the point
is inside or outside of the solid, since the distance should only depend on the shape
of the surface in question.

4. It is then the role of ”DistanceToIn” or ”DistanceToOut” methods of its parent
J4VSurface class to judge the distance depending on the context such as the angle
between the surface normal and the velocity vector v. This way, we can avoid
repetition of the same code.

5. All J4TwistedTubs has to do will then be to simply invoke ”DistanceToIn” or
”DistanceToOut” for each of the bounding surfaces and choose the best3. The sur-
face normal can then be calculated by calling the corresponding GetNormal method
for the selected surface.

As described in last section, J4TwistedTubs consists of three pairs of three kinds of
surfaces. We named these three kinds of bounding surfaces J4HyperboloidalSurface,
J4TwistedSurface, and J4FlatSurface, all of which are descendants of J4VSurface.
Interrelation of these classes is illustrated in Fig. 5 as a class diagram. On the other
hand, Fig. 6 shows the outward direction of each surface as stored in a data member
called fOrientation.

As sketched above, the abstract base class J4VSurface has the following methods:

3The best is usually the one that returned the shortest distance. One exception is the case in which
a particle is coming into the solid from a corner or edge of the solid.

J4TwistedTubs

DistanceToIn(p, v)
DistanceToIn(p)
DistanceToOut(p, v)
DistanceToOut(p)
SurfaceNormal(p)
Inside(p)

J4VSurface* fSurface[6]

J4VSurface

DistanceToIn(p, v)
DistanceToOut(p, v)
DistanceTo(p)
SurfaceNormal(p)
virtual DistaceToSurface(p, v) =0
virtual DistaceToSurface(p) =0

J4VSurface *fNeighbours[4]
G4int fHandedness
G4ThreeVector fTranslate
G4RotationMatrix fRot

J4TwistedSurface

DistanceToSurface(p, v)
DistanceToSurface(p)
GetNormal(p)
GetAreaCode(p)

G4double fKappa

J4FlatSurface

DistanceToSurface(p, v)
DistanceToSurface(p)
GetNormal(p)
GetAreaCode(p)

G4ThreeVector fNormal

J4HyperbolicSurface

DistanceToSurface(p, v)
DistanceToSurface(p)
GetNormal(p)
GetAreaCode(p)

G4double fKappa
G4double fR0

1 11

2 22

Figure 5: A class diagram in UML of
J4TwistedTubs

fOrientation = 1

fOrientation = -1

fOrientation = 1

fOrientation = -1

fOrientation = 1

fOrientation = -1

Figure 6: Values of
fOrientation data member
of J4TwistedTubs

J4VSurface

G4int DistanceToSurface(const G4ThreeVector &p, G4ThreeVector *xx,

G4double *distance, G4int *areacode) = 0

which calculates the distance (*distance) from a point p to the surface as well as
the point (*xx) of the closest approach to the surface and an *areacode given by
GetAreaCode explained below, and then returns the number of the points of closest
approach that is always 1.

G4int DistanceToSurface(const G4ThreeVector &p, const G4ThreeVector &v,

G4ThreeVector xx[], G4double distance[], G4int areacode[],

G4bool isvalid[], EValidate validate) = 0

which calculates the distance(s) (distance[]) along the velocity vector v to the
surface from the point p, the intersection(s) (xx[]) of the particle track with the
surface, and the areacode(s) (areacode[]) of intersection(s), and then returns the
number of intersections. If so flagged by validate, it does boundary check for each
of the candidate intersection(s) and passes the test result through isvalid[]. The
return value then becomes the number of valid intersection(s).

G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isglobal) = 0

which calculates and returns the normal at a surface point xx. The surface point
xx and the normal to be returned are assumed to be given in the coordinate system
of its mother solid or in the local frame of the surface in question, depending on
whether isglobal is TRUE or not, respectively.

G4Int GetAreaCode(const G4ThreeVector &xx, G4bool withTol) = 0

which decides whether the intersection xx given by DistanceToSurface(p,v) is
on a boundary, or at a corner, or inside or outside of the surface with or without
tolerance as flagged by withTol, and then returns a corresponding area code.

G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v,

G4ThreeVector &xx)

which invokes DistanceToSurface(p,v) of its descendant concrete class and judges
the validity of each of the resultant intersection(s) and the corresponding distance(s),
examining the sign of the distance, the angle of the particle velocity v to the surface
normal at the intersection point on the surface. If the intersection is on a boundary
or at a corner of the surface, it also checks the angle to the surface normal(s) of
the adjacent surface(s). It then returns the distance if valid, or infinity otherwise,
together with the valid intersection xx, if any.

G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v,

G4ThreeVector &xx)

which invokes DistanceToSurface(p) of its descendant concrete class and judges
the validity of each of the resultant intersections(s) and the corresponding dis-
tance(s), taking into account the sign of the distance and the angle between the
surface normal and the particle velocity v, and then returns the distance to the
caller if valid, or infinity otherwise, with the valid intersection passed through xx,
if any.

G4double DistanceTo(const G4ThreeVector &p)

which just passes the return value of DistanceToSurface(p) without any additional
judgment. This functions is used in DistanceToIn(p) or DistanceToOut(p) of
J4TwistedTubs.

Notice that the first four of these member functions are pure virtual and should be
implemented in its derived concrete classes. The implementations of these four functions
in the three derived surface classes:
J4HyperboloidalSurface, J4TwistedSurface, and J4FlatSurface, are complicated but
straightforward and can be carried out based on their mathematical representations in
the previous section. Leaving out technical details for our CPC paper[8], we will move on
to the test of the new solid (J4TwistedTubs) in the next section.

4 Test of J4TwistedTubs

In order to test the new solid class J4TwistedTubs, we prepared a test program (for stereo
cells) as follows. We first constructed a world volume with a cubic shape of 6m × 6m
× 6m and put, at its center, a cylindrical tube-type layer with inner and outer radii of
30cm and 130cm, respectively, and a length of 260cm. In this cylindrical layer, we placed
a J4TwistedTubs object, which has a twist angle (∆φ) and a φ-width of π/3, inner and

26
0c

m

20
0c

m

100cm

130cm

Figure 7: Schematic view of the test geometry

outer radii at the endcaps of 50cm and 100cm, respectively, and a z-length of 200cm. Into
this mother J4TwistedTubs volume, installed were two daughter J4TwistedTubs objects
which have half the φ-width but otherwise the same geometry. All of these volumes are
made of air. A schematic view of the test geometry is shown in Fig. 7.

In order to evaluate the computing speed of J4TwistedTubs, we also prepared an-
other test program (for axial cells) with the mother and the two daughter J4TwistedTubs
objects replaced by ordinary cylindrical tubs (G4Tubs).

4.a Test with Geantinos

Geant4 provides a hypothetical particle called ”geantino” designed primarily for geometry
tests. A geantino does not interact with any materials and flies along a straight line
trajectory. It only makes a hit when it crosses a boundary of volumes which are sensitive4.
We first carried out a geantino test of J4TwistedTubs, using the aforementioned geometry
test program with only the daughter J4TwistedTubs objects made sensitive. Fig. 8 is a
3-dimensional view of hit points made by 10000 geantinos injected from 4π steradian
around the surrounding cylinder. As seen from the figure all the hit points are correctly
on the surface of the daughter J4TwistedTubs volumes.

4.b Test with Higgs Events

Unlike geantinos, a real charged particle makes a curved trajectory in a central tracker
due to the magnetic field applied to it, and interacts with various detector materials,

4Geant4 generates a hit when (1) a physics process took place on a flying particle or (2) its track
crossed a boundary of a volume registered as a sensitive detector.

Figure 8: 3-dimensional view of hit points of geantinos on the daughter J4TwistedTubs

volumes

Figure 9: x-z view Figure 10: x-y view

producing, for instance, low energy tracks such as δ-rays which might complicate the
particle tracking through the detector volumes. In order to stress-test our J4TwistedTubs
under more realistic environment, we also tried Higgs events (e+e− → ZH at

√
s =

350 GeV) generated by Pythia[9]. In this case, the number of tracks with a transverse
momentum of 1 GeV or greater is around 50 per event. Because of the lack of a calorimeter
in this test program, however, relatively low energy tracks curl up and pass through
the sensitive volumes multiple times. Taking into account this curl-up effect and the
geometrical acceptance of the J4TwistedTubs volumes being about (π/3)/(2π) = 1/6,
the average number of tracks passing through the twisted volumes was estimated to be
around 10 per event. Processing of 1000 Higgs events, which thus correspond to roughly
10000 tracks hitting the sensitive volumes, took 11647 seconds on a Power Macintosh
800MHz (Dual CPU) with 1GB memory for the J4TwistedTubs test program. The same
test took 9242 seconds on the same platform for the axial cell test program. The 25%
extra CPU time consumed by J4TwistedTubs is acceptable for our purpose, considering
the expected CPU time necessary for calorimeter simulation.

5 Bunch-separation capability of JLC-CDC

Owing to our new solid for stereo cells, now we can estimate the bunch-separation capa-
bility of the cylindrical stereo mini-jet cell drift chamber.

The bunch separation capability is essential for the JLC-CDC. As Fig.11 shows, the
beam of JLC consists of bunch-trains, each of which contains 192 bunches with an interval
of 1.4 nsec. The duration of one bunch train is thus 268.9 nsec. Since this train length
is much shorter than the sweeping time of ionization electrons in a drift cell(< 6.7µsec),
background events from any bunches in a train can overlap with an important physics
event.

In order to separate the signal event from these background events, we should be able
to time-stamp tracks recorded in the CDC on a track-by-track basis. We can realize such
time-stamping capability by staggering drift cells in adjacent layers. Fig.12 illustrates
how. Suppose we have a mini-jet track from a beam bunch at t = T ′

0 and a signal event at
t = T0 > T ′

0. Since the drift cells are staggered from layer to layer, the ionization electrons
generated by the mini-jet track will drift over some length L in the opposite directions in
the adjacent cells. This will create discontinuity between track segments as shown by the
dotted lines in Fig.11. The signal track, on the other hand, will look like the solid line in
the same figure, where one will find no discontinuity.

It is thus expected that we will be able to eliminate background tracks by checking
the goodness of the fit (χ2) or something equivalent. There is, however, no article con-
firming the speculation especially in the case of stereo mini-jet cell chambers. In order
to quantify the time-stamping capability of staggered mini-jet cells and to investigate the
effect of the stereo layers, we studied the time-stamping performance of both a axial only
geometry and a axial + stereo geometry.

T

.....

1.4ns　　192 bunches / train (1 train = 268.9 ns)

Overlap

T0T0'

JLC Beam Structure

Figure 11: Schematic view of the overlapping events

5.a Analysis procedure

The procedure of analysis is the following:

1. Generate 250 GeV single-muon tracks by JUPITER (2000 event).

2. Move T0 and consequently the hit points artificially in Satellites.

3. Fit each single-muon track to a helix in Satellites.

4. Calculate χ2.

The artificial T0 shift was chosen to be 0 ns, 14 ns, 21 ns, and 28 ns, which correspond to
0, 10, 15, and 20 bunches, respectively. Figs.13 and 14 are typical χ2 distributions: the
former represents a hypothetical configuration which includes axial cells only, while the
latter includes both axial and stereo cells. The dotted histograms are from the helix fit
to the simulated data, while the solid lines are expected χ2 distributions in the case of
ndf = 955. Their good agreement demonstrates that our helix fitting is working correctly.

5.b Results

The χ2 distributions for different T0’s are compared in Figs.15 and 16. As expected, the
peak values of the χ2 distributions increase with the input T0 values. The peak values
are, however, significantly different between the axial only and the axial + stereo cases.

5In the case of the 3T design, the CDC has 50 sampling points, each provides a drift time and a z
coordinate from charge division. Subtracting the number of helix parameters of 5, we have 2×50−5 = 95
as the number of degrees of freedom.

T=T0

T=T0'

L = Drift Velocity * |T0 - T0'|

At T=T0, the drift electrons from
dotted tracks have drifted over
the length L .

χ2 of fitting dotted tracks
will increase with |T0 - T0'|

Figure 12: A staggered cell structure

50 100 150 200 2500

200

400

600

800

1000

1200

χ2 (All Axial,
 Helix fitting)
Mean 96.81
RMS 14.42

χ2 (calculation,
 ndf =95)
Mean 95
Sigma 13.78

χ2

T0 = 0

Figure 13: Axial cells installed in all layers
(0-9th layers)

50 100 150 200 250

100

200

300

400

500

600

700

800
χ2 (Axial + Stereo,
 Helix fitting)
Mean 96.08
RMS 14.77

χ2 (calculation,
 ndf =95)
Mean 95
Sigma 13.78

0
χ2

T0 = 0

Figure 14: Axial cells installed in 0, 3, 6, and
9th layers. Stereo cells installed in the rest.

This is because the discontinuity between staggered cells of adjacent stereo layers can be
compensated by adjusting tan λ within the range that σz allows. This is reflected not
only in the difference of the peak values but also in the difference of the widths of the
distributions. The RMS increases with T0 up to 43.5 for the axial only and 56.5 for the
axial + stereo geometries at T0 = 28 nsec (20-bunches away).

The results imply that with this simple χ2 method, a stereo mini-jet cell drift cham-
ber can separate background tracks occurring > 20-bunches away. The number of mini-jet
background events is, however, estimated to be ∼ 1 per 10-bunches. It is hence desirable
to have a better time-stamping resolution. To improve the time-stamping capability, we
added one more free parameter T0 into our helix fitting program. Fig.17 shows the χ2

distribution for the axial + stereo geometry at T0 = 21ns, which is remarkably improved
from the corresponding plot in Fig.16. The distribution is consistent with the expected

0 50 100 150 200 250 300
0

50

100

150

200

 = 0
0

T

 = 14ns
0

T

 = 21ns
0

T

 = 28ns
0

T

A
ll
 l
a
y
e
rs

 a
re

 a
x
ia
l

Figure 15: Axial cells installed in all layers
(0-9th layers)

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200 = 0
0

T

 = 14ns
0

T

 = 21ns
0

T

 = 28ns
0

T

A
x
ia
l
+

S
t
e
r
e
o

Figure 16: Axial cells installed in 0, 3, 6, and
9th layers. Stereo cells installed in the rest.

χ2 distribution for ndf = 94.

hChi2

Entries 2428

Mean 94.42

RMS 13.52

2
χ

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

220

240

hChi2

Entries 2428

Mean 94.42

RMS 13.52

=21ns
0

Helix Fit with T

 distribution for
2

χ

2-6=94×ndf=50

mean=ndf=94

=13.7ndf×2RMS=

Figure 17: χ2 distribution for the axial + stereo geometry at T0 = 21ns.

The T0 distributions from the fit are shown in Figs.18 and 19 for the axial only and
the axial + stereo geometries, respectively. We can see that the resultant T0 gaussian-
distributes itself with mean values right at the input T0 values and with an σT0 of 2.15 nsec
for the axial only and 2.84 nsec for the axial + stereo geometries, which is independent
of the input T0 values6. This resolution indicates that the cylindrical stereo mini-jet cell
drift chamber can separate background tracks that are > 7 bunches away at a 3.5 σ level,
even though the time-stamping resolution is 30% worse than the axial only case. These
preliminary results indicate that the time-stamping resolution satisfies the requirements.

6Naive estimate based on the spatial resolution, the drift velocity, and the number of sampling points
gives 1.8 nsec for the axial only geometry: σT0 ' σxy/vdrift

√
Nsample. This is comparable with our

simulated result of 2.15 nsec.

 from Fit [ns]0T
-10 -5 0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

0ns

7ns

14ns

21ns

=2.15nsT0σ

 50 pts×m µ = 85xyσDefault 3T Configuration with

Axial

Figure 18: Axial cells installed in all layers
(0-9th layers)

 from Fit [ns]0T
-20 -10 0 10 20 30 40
0

50

100

150

200

250

300

=2.84nsT0σ

0ns
7ns

14ns
21ns

50 pts×mµ=85xyσDefault 3T Configuration with

Axial+Stereo

Figure 19: Axial cells installed in 0, 3, 6, and
9th layers. Stereo cells installed in the rest.

6 Summary

We have developed a new Geant4 solid called J4TwistedTubs in order to handle stereo
mini-jet cells of a cylindrical drift chamber like JLC-CDC. This new solid consists of three
kinds of surfaces, each of which is represented respectively by J4HyperboloidalSurface,
J4FlatSurface, and J4TwistedSurface. These three surface classes correspond to inner
and outer hyperboloidal surfaces, two end planes, and two so-called twisted surfaces that
make slant and twisted φ-boundaries, respectively.

We have implemented stereo cells with the new solid, and tested them using geanti-
nos and Pythia events (e+e− → ZH at

√
s = 350 GeV). The stereo cells consumed 25%

more CPU time than ordinary axial cells did. We found this acceptable, considering the
expected CPU time necessary for calorimeter simulation.

Using the new solid, we installed stereo cells into JUPITER. We then estimated
the time-stamping capability of the staggered cell structure as of our JLC-CDC using the
JUPITER generated Monte Carlo events. For the axial only geometry we obtained a time-
stamping resolution of 2.15 nsec which is comparable with the naive analytic estimate of
1.8 nsec. We found that the inclusion of stereo layers deteriorated the time-stamping
resolution by 30% and yielded a T0 resolution of 2.84 nsec, for the 3T design of the JLC-
CDC. This time-stamping resolution implies that the JLC-CDC can clearly separate the
background tracks occurring > 7 bunches away, and is compliant to the requirement from
the estimated background rate of 1 event per 10 bunches.

Acknowledgments

The author would like to thank K. Fujii and O. Nitoh for the collaboration from which this
work emerged. The author would also like to thank A. Miyamoto, T. Aso, N. Khalatyan,

R. Kuboshima, and all the other members of the ACFA physics working group and JLC
software group for useful discussions and helps. She is also grateful to Geant4 users group
and developers. In particular, a discussion with G. Cosmo has been very useful.

References

[1] JLC group, KEK Report 92-16, December, 1992.

[2] ACFA Linear Collider Working Group, KEK Report 2001-11, August (2001),
http://www-jlc.kek.jp/subg/offl/jim/index-e.html

[3] Proceedings of the APPI Winter Institute, KEK Proceedings 2002-08, July (2002)

[4] http://root.cern.ch/

[5] http://www-jlc.kek.jp/subg/offl/jsf/index.html

[6] N.Khalatyan, K.Fujii, H.Okuno,T.Abe, K.Hoshina, Y.Kato, Y.Kurihara, H.Kuroiwa,
T.Matsui, O.Nitoh, A.Sugiyama, K.Takahashi, T.Watanabe, T.Yoshida, Nucl. Inst.
and Meth. A428 (1999) 403.

[7] http://wwwinfo.cern.ch/asd/geant4/G4UsersDocuments/UsersGuides/
ForToolkitDeveloper/html/index.html

[8] K. Hoshina, K. Fujii, O. Nitoh (Tokyo U. of Agric. Tech.) e-Print Archive: hep-
ex/0303014
KEK-PREPRINT-2002-140, Mar 2003. 24pp.
to appear in CPC soon.

[9] http://www.thep.lu.se/t̃orbjorn/Pythia.html

