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1 Introduction

Monte Carlo simulation comprises an essential part of any modern experimental high energy
physics. In the designing stage of a large scale project such as the JLC, its primary goal is
to identify important physics targets and then set machine parameters such as beam energy,
luminosity, beam energy spread, beamstrahlung, beam related background, etc. and detector
parameters such as momentum resolution for charged particle tracking, calorimetric energy
resolution, impact parameter resolution, minimum veto angle, particle identification, and so
on. In the early phase of the project design, we usually use a quick simulator, which roughly
models a detector mainly through parameterization of its performance. Largely based upon
parameterization, the quick simulator lacks, however, geometrical details of the detector struc-
ture and, consequently, cannot be used to design details of the detector configuration. In order
to choose base technology for each detector component and draw its concrete design, we thus
need a full simulator which tracks particles through the detector, taking into account various
physics processes such as energy loss, multiple scattering, etc. with details of the detector con-
figuration implemented. Such a full simulation is also indispensable for evaluating the effects
of beam-related background coming from beam lines or to demonstrate existence proof of some
concrete detector design that satisfies the performance goal set with the quick simulation. The
other role of the full simulator is to calibrate the quick simulator. From the view point of CPU
economy, this is very important, since physics simulation studies usually demand high statistics
and the use of any full simulator is impracticable.

The JLC group has a full simulator named JIM[1], which is based on a legacy FORTRAN
program, Geant3. Considering the life cycle of the JLC project, however, it is desirable to take
full advantage of modern software technology such as Object-Oriented Programming (OOP).
We are thus developing a full simulator using C++ OOP language. In this article, we first
describe the basic design of the new simulator and its current state, and then present an
example of its application to studies for central tracker design.

2 Basic Design of the New Full Simulator

The full simulation starts with the tracking of particles fed into the simulator through the
detector, taking into account various physical processes such as decays into daughter particles, if
unstable, or interactions with materials such as energy loss, multiple scattering, electromagnetic
showering, nuclear interactions, and so on. Along the track of each particle, when it passes
through a sensitive region of the detector, information such as energy deposit, entering and
exiting positions, timing, etc. is stored. These pieces of exact hit information comprise so
called Monte Carlo truth (MC truth). The most complete simulation involves generation of
raw signals from the exact hit information followed by event reconstruction using the same
event reconstruction program for real experimental data. Depending upon the study purpose,
however, we can sometimes skip the signal generation step and create hit points directly from
the exact hit information with appropriate smearing due to finite detector resolutions. The
simulator should allow this kind of switching of simulation levels. Since the simulation of
various physical processes in the detector is the most time-consuming part of the full event
simulation, it is thus advantageous to separate the part that generates the MC truth from the
rest of the simulator and reuse the same MC truth for different levels of simulations. The
former part is, in our case, named JUPITER (JLC Unified Particle Interaction and Tracking
EmulatoR)[2] and based on GEANT4 [3]. The latter consists of several modules based on



ROOT[4]/JSF[5]. These modules are named after JUPITER’s satellites and thus hereafter
called the Satellites, whose more detailed explanation is given later.
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One of the most important roles of the full simulation is to establish event reconstruction
technique for real experimental data. Our event reconstruction program is named URANUS
(Unified Reconstruction and ANalysis Utility Set). As the name suggests, URANUS does
not belong to the Satellites. However, some important fraction of the Satellites inherits from
URANUS as explained later so that developing URANUS means developing the Satellites.

2.a JUPITER

One of the design goals of JUPITER is to allow easy modification of geometrical parameters
that describe various detector components, since its currently conceived most important usage
is to optimize the detector parameters for the JLC. In addition, it should allow simultaneous
development of different detector components by different groups of people.

To these ends, JUPITER provides (1) individual work space directory for each detector
or accelerator subgroup to assure inter-subgroup independency and (2) a set of base classes
to mimic detector building process: assembling of each device and its subsequent installation,
thereby facilitating easy replacement, un-installation and re-installation, of any detector com-
ponent.

2.a.1 Work Space

Fig. 2 shows the directory tree of JUPITER. Every detector or accelerator subgroup is assigned
its own directory, in which all the program code related to his/her subgroup is stored. Con-
sequently, developers of a subdetector can update the code for their detector or accelerator
component with small labor by just replacing their assigned directory.

The kern directory does not belong to any subgroup but is managed by an administra-
tor, and provides a minimum set of JUPITER consisting only of one empty world volume.
As its name shows kern stands for ”kernel of JUPITER” and contains common classes for
all subgroups such as several base classes that characterize JUPITER, as well as those re-
quired by Geant4 including J4RunAction, J4EventAction, J4PrimaryGeneratorAction, and
J4PhysicsList.
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2.a.2 Base Class of JUPITER

In our design, every geometrical component, even the World Volume, must be a derived class
from a base class called J4VComponent. This pure virtual base class specifies basic interfaces
that any detector component must be equipped with: an Assemble() method to define a shape
and material of the object as a G4Solid and a G4LogicalVolume, an InstallIn() method to
install it into its mother volume, thereby appending positional information to the object as a
G4VPhysicalVolume. When the detector component in question has a substructure consisting
of subdetector components, the invocation of the parent’s Assemble() method induces recur-
sive calls of the subdetector-components’ Assemble() methods, in order to assemble all the
substructures. The base class also provides an automatic naming system for the hierarchy of
the detector components as well as some handy interfaces to frequently used shapes including
tubes and boxes.

In addition to the Assemble() method, J4VComponent has other recursively-called vir-
tual methods OutputAll() and SwitchOn() & SwitchOff(): the former manages output of
hit data and the latter two activate/inactivate the sensitive detectors attached to the detector
components. The OutputAll() method invokes the OutputAll() method of its attached sen-
sitive detector, if any and that activated, and then recursively calls the OutputAll() method
of its subcomponents. The OutputAll() method of the attached sensitive detector invokes the
virtual Output() method of a base class named J4VHit derived from G4VHit, which induces
a call to the Output() method of the actual hit class inheriting from J4VHit of the detector
component by polymorphism. Consequently, all you have to do for saving hit data is to create
your own Sensitive Detector and Hit classes by inheriting from J4VSD and J4VHit, respectively,
and then implement the Output() method in your Hit class. As already noted, those virtual
methods related to the hit data generation are in effect for a given instance of J4VComponent



only when it has a pointer to an instance of J4VSensitiveDetector, namely, the component
is registered as a Sensitive Detector.

For parallel and distributed development of various detector components, JUPITER also
provides a base class called J4VMaterialStore for material definitions. By instantiating a class
object derived from this base class, a developer of each detector component can define materials
without conflicting with developers of the other parts.

Fig.3 shows UML picture of those base classes.

2.a.3 Design Features of JUPITER

The main design features of the JUPITER can be summarized as follows:

(1) a base class to provide common, intuitive, thus user-friendly interface to any detector
component,

(2) an automatic naming system to avoid name collisions among various geometrical objects
representing individual detector components, and

(3) a material management system to allow developers of each subdetector to consistently
introduce user-defined materials, while minimizing duplication of pre-registered materials.

Feature (1) sets a unified framework for the software organization, while features (2) and
(3) greatly facilitate parallel and distributed development of various detector components by
minimizing their interference.

2.a.4 Current Status of JUPITER

Using these classes, we started with development of the CDC part of JUPITER. Soon after
this, implementation of the VTX part began. Fig.4-a) shows a top-right quadrant of the tracker
part, including VTX, an Inner Tracker (IT), and the CDC. Notice that very fine structures
such as individual sense wires are implemented in the CDC part. Fig.4-b) is, on the other
hand, a blowup of the VTX part, demonstrating the layout of ladders of CCD pixel detectors.
Although the calorimeter part of JUPITER is yet to be developed, JUPITER can now handle
multi-particle final states as from the process e+e− → ZH. A sample event display is shown in
Fig.5 for this process generated at

√
s = 300 GeV.

We can clearly see two jets from the H → bb̄ decay, recoiling against a Z boson that
decayed invisibly into νν̄. Notice that only charged particles are shown in the figure.

2.b Satellites and URANUS

2.b.1 Structure of Satellites

While JUPITER generates Monte-Carlo truth, its satellites smear it and simulate procedure of
event reconstruction. Currently the satellites include the following:

(1) IO (Input/Output module set), designed to absorb any change in JUPITER’s output
format, converts JUPITER’s output (plain ASCII text at present) to a ROOT file.

(2) METIS (Monte Carlo Exact hits To Intermediate Simulated output) then reads it in
and carries out event reconstruction and analysis. METIS inherits from URANUS, which
reconstructs and analyzes event data, and facilitates simulation of event reconstruction.
In addition, there is
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(a) (b)

Figure 4:

(3) LEDA (Library Extension for Data Analysis), which is a general purpose analysis library.

Notice that URANUS is an independent planet, since it is primarily for real data and does not
belong to JUPITER.

The concept of our simulation and analysis framework is depicted in Fig.6.

2.b.2 Design Features of Satellites

The framework of Satellites and URANUS is not yet fully fixed, although we can enumerate
present features and future plans:

(1) IO will manage all the Input/Output procedure in any stage of the simulation, for exam-
ple, output of Monte Carlo truth from JUPITER, or intermediate simulated output from
METIS.

(2) Because METIS inherits from URANUS, all the event-reconstruction methods in URANUS
will be automatically adopted to METIS, thanks to the OOP technology.

(3) Users can change simulation level by choosing modules from Satellites and URANUS. In
the case of the central tracker (CDC), we can choose, for instance, next module sets:

1. IO → J4CDCHitMaker → J4CDCTrackFinder → U4CDCTrackFitter

2. IO → J4CDCHitMaker → U4CDCTrackFinder → U4CDCTrackFitter

3.
...

Procedure of event reconstruction is, however, tightly connected with characteristics of
individual detector components. It is thus conceivable that there will be only a little to add to
the JSF/ROOT framework to complete a general framework of URANUS and Satellites, except
for the IO interface.

3 Example of CDC Analysis

Using JUPITER and its Satellites, we studied surviving hit fraction and momentum resolution
for the CDC. As Fig.5 shows, charged particles are often produced in narrowly collimated jets



Figure 5: A typical event of e+e− → ZH, Z → νν̄, H → bb̄.
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at JLC experiments. In order to reconstruct such a jetty event in terms of heavy partons such
as W/Z bosons, the Higgs boson, or the top quark, we need an energy flow resolution which is
good enough to separate a W from Z with the jet invariant mass method. In order to achieve
such a high resolution, we need to use tracking information whenever possible and limit the use
of calorimetry to neutral particles. Two-hit separation will thus be very important at the JLC
to assure good momentum resolution for tracks in jets. The question is thus how many hits
will be lost when 2-hit separation is, say, 2mm and how it affects the momentum resolution. In
the following subsections, we discuss these items.

3.a Surviving Hit Fraction

In a real experiment, when a pair of hits are created by two closely separated tracks in the
same drift cell, the first hit that is closer to the sense wire will leave a local space charge due
to avalanche and might affect the second hit that is further away from the sense wire. In the
worst case, the second hit will be lost and the momentum resolution of the track to which the
lost hit belongs to will be deteriorated.

In order to investigate the effect of such losses of hits, we killed hits artificially when the
second hit was created within 2mm from the first one (see Fig. 7). Fig. 8 shows the results
of our analysis of (a) how many hits belonging to a track (pt > 1GeV), (b) the number of
surviving hits per the number of original hits (surviving hit fraction), (c) Layer dependency of
the surviving hit fraction, and (4) the distribution of minimum 2-hit distance, under this most
pessimistic condition.

WireNo.0 WireNo.50IP

Red Cross    Killed Hit
Blue Cross   Survived Hit

Figure 7:

Fig. 7-(b) tells us that we lose only 10% of hits on average if two-hit separation is 2mm.
From the point of view of momentum resolution, however, the loss of the lever arm length is
more serious than that of the number of hits. Fig. 7-(c) indicates the surviving hit fraction
decreases as as we move from the outermost layers to the innermost layers: 20% of tracks will
lose their lever arm lengths.



It is, however, possible to compensate the loss of the lever arm length by using other
trackers such as VTX or an Intermediate Tracker. Empirically, it is known that using inner
trackers has the same effect as imposing an Interaction Point (IP) constraint. In the next
subsection, we discuss the momentum resolution with or without the IP constraint.

3.b Momentum Resolution of the CDC

Fig. 9 plots momentum resolutions in the low momentum region. When 2-hit separation capa-
bility is 2mm, the momentum resolution of the CDC alone deteriorates by almost 10% compared
to the ideal case of 2-hit separation being 0mm. When the IP constraint is imposed, the mo-
mentum resolution recovers almost completely. We can thus conclude that the requirement of
the 2-hit separation of 2mm or better can be regarded reasonable.

4 Summary and Future Direction

A basic framework for detector simulation and analysis (JUPITER, its Satellites, and URANUS)
based on GEANT4 and ROOT/JSF has been developed and is now being used to develop a
full JLC detector simulator. JUPITER, equipped with basic tracking detectors including VTX
and the CDC, can generate hits for multi-hadronic final states such as those from e+e− → ZH
and can be used, together with its Satellites, to optimize detector parameters, even though
some detector components such as calorimeters or muon detectors are still missing. Recently,
beamline implementation has also begun to simulate beam-related background.

Using this simulator, we checked surviving hit fraction for the CDC. Under the condition
of 2-hit separation of 2mm, we lose 10% of hit points on average and 20% at the innermost
layer, implying loss of lever arm length and consequently deterioration of momentum resolution.
However, the momentum resolution can be recovered by applying the IP constraint, which has,
empirically, the same effect as including information from inner trackers.
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