MDI Overview

T. Tauchi, KEK ILCでの測定器に関する研究会 3 March, 2005, KEK

What is MDI ?

MDI is Machine Detector Interface.

Machine : Beam Delivery System (BDS) from LINAC-end to beam dump

> collimation, energy/polarization, final focus, extraction (energy/polarization) and beam dump

Detector : Interaction Region experiment (physics; Higgs, Top, W/Z, SUSY, extra-D ...) luminosity, background and minimum veto-angle

Primary Role of MDI

Major task of MDI is to compile requirements from the experimental side in order to communicate the accelerator physicists for designing the BDS.

Crossing angle (headon, V-0.3mrad, 2mrad, 7mrad, 20mrad, >30mrad@yy) 2 IP's for 2 "identical experiments" Precise energy and polarization measurements Backgrounds (muons and synchrotron radiations)

L* : Distance of QC1 from IP

Vertex R (the innermost radius) Minimum veto-angle (very forward calorimeter) Backgrounds (pairs, mini-jets, backscattered Y and n) Instrumentations (pair monitor, feedback, Shintake monitor ...)

BDS: Extraction Line

Crossing angle Choice of final quadrupoles (L*) Precise energy and polarization measurements Backgrounds (disrupted beam, back-scattered n and γ .)

Summary of MDI issues

System	Machine	Detector
BDS	Crossing angle 2 IPs; "identical" experiments Collimation depth Precise E/P measurements	Backgrounds: μ, synchrotron γ
R	L* : distance of Final-Q from IP	Min. angle: very forward cal. Precise luminosity measurement Backgrounds; pairs, mini-jets, back-scattered Y, n Instrumentation; pair/Shintake monitors, feedback, Nano-BPM, laser-wire etc.
Extraction	Crossing angle Choice of Final-Q (L*) Precise E/P measurements	Backgrounds; disrupted beam, back-scattered γ, n Beamstrahlung monitor

Horizontal Crossing Angle

Small angle : $\Phi < 2\sigma_x/\sigma_z > \Phi$: Large angle 3.7mrad

easy extraction line

smaller back scattering multi-bunch instability irrelevant in "cold"

timing of two crab cavities 16(50)fsec at $\Phi=20(7)$ mrad

smaller dead cone (θ)

radiation in solenoid magnet

Extraction line (head-on) at TESLA-TDR

R.Appleby, LCWS2004 Small angle crossing (2x1mrad) P.Bambade, B.Mouton(Orsay), O.Napoly, J.Payet(Saclay)

(TESLA bunch-spacing → no multi-bunch kink instability) No Septum, of course

- only ~15% luminosity loss without crab-crossing (2 mrad)
- correction possible without cavities exploiting the natural η ' in the local chromatic correction scheme used $\theta \sigma_z = \eta \delta \rho / \rho$, $\eta \gamma' = 10 \text{mrad}$, $\delta \rho / \rho = 0.1\%$
- no miniature SC final doublet needed
- no strong electrostatic separators needed
- both beams only in last QD \rightarrow more freedom in optics
- negligible effects on physics
- diagnostics of spent beam should be easier

Y. Iwashita, MDI workshop, 7 Jan.05

RF Kicker for Head-ON Collision

Y. Iwashita, MDI workshop, 7 Jan.05 corrected on 23 Feb.05

L.Keller, ILC BDS@SLAC, 8 Feb.2005 Tunnel Layout for ILC Head-on Collisions – Zero Degree Extraction

X(CM)

Crossing Angle Choice T.Tauchi, P.Bam

T.Tauchi, P.Bambade, 14Nov.2004

Criteria	head-on	v:0.3mrad	h:2mrad	h:7mrad	h:20mrad
Septum at 50m from IP	must	must	no	no	no
Irradiation at Septum	80W/0.3W	no	no	no	no
Electrostatic separator	must	must	no	no	no
Crab cavity	no:L=100%	must:L=0% 200kV,1.3GHz	option: L=85%	option:L=40%	must:L=0%
γ, beam dumps,	2 dumps,	2 dumps,	1 dump,	1 dump,	1 dump,
Extraction line	240m free	240m free	240m? free	90m? free	"no" free
Final O (EO)	SQ:48mmΦ	SQ:48mmΦ	SQ:48mmΦ	SQ:large bore	SQ: compact
	large bore	large bore	large bore	conventional	permanent
Synchrotron Y, bent in ext-FQ	no	yes	yes	yes small	no
Spent electrons over-focused	yes	yes	yes	yes small	no
E/P measurement after IP	no	no	probably yes	yes	yes
Physics impact: min. veto angle	2mrad for beam pipe	2mrad	4mrad	9mrad	15-20mrad
Physics impact: background at <u>VTX</u>	no hot spot	no hot spot	no hot spot	no hot spot	hot spot

Brett Parker, MDI workshop, 7 Jan.05

K.Moffeit, MDI workshop, 6 Jan.05

Spin Precession

$$\theta_{spin} = \gamma \frac{g-2}{2} \cdot \theta_{bend} = \frac{E(GeV)}{0.44065} \cdot \theta_{bend}$$

Change in Bend Angle	Change in Spin Direction	Longitudinal Polarization Projection	
1 mrad	32.5 °	84.3%	
275 μrad	8.9 °	98.8%	
100 μ r ad	3.25 °	99.8%	

Change in spin direction for various bend angles and the projection of the longitudinal polarization. Electron beam energy is 250 GeV.

Spin Rotation Schemes at the ILC for Two Interaction Regions LCC-0159 SLAC-TN-05-045 and Positron Polarization with Both Helicities, **IPBI TN-2005-2** by K.Moffeit, M.Woods, P.Schuler, K. Moenig and P. Bambade Feb. 2005

E measurement TESLA-TDR

M.Hildreth, LCWS04, 21 April 2004 BPM-based Spectrometer

NLC BDS 1 TeV CM Configuration with Spectrometer Chicane

Design Considerations:

- limit SR emittance growth
 - 360μ rad total bend $\Rightarrow 0.5\%$
- available space in lattice
 - no modifications necessary, yet
- 10m drift space maximum one can consider for mechanical stabilization, alignment
- 37m total empty space allows for BPMs outside of chicane to constrain external trajectories
- Tiny energy loss before IP
- non-ideal β-variation?
- ⇒ Constraints lead to a required BPM resolution of ~100nm (Resolution ⊕ Stability)

$\Delta E/E$ measurement at the 2nd FP/IP

Extraction Line Compton Polarimeter

- Compton IP 60 meters downstream of e⁺e⁻ IP
- 2mrad bend angle from analyzing magnet
- segmented gas Cherenkov detector, similar to SLD design
- \bullet multi-Compton mode with high power pulsed laser at ${\sim}17 \mathrm{Hz}$

Also considering,

- pair spectrometer for backscattered photon measurement
- alternate detector technologies (ex. quartz fiber)

LCWS 2004

M.Woods, LCWS2004

SLAC End Station A Test Program

• BDI equipment tests in "realistic" (=dirty) environment

Existing RF BPMs can be used for stability, resolution tests

5 meter region to mock up IR/forward region with masking, FONT, pair detectors Beamline components scavenged from SPEAR, other SLAC surplus

BDS Simulation

Roadmap Report,2003

Vertex R: Synchrotron Radiations BDS-Simulation (GEANT4) by K. Tanabe

1.5

10

-0.5 0 Y [cm]

0.5

0

-0.5

-1

-1.5

Takashi Maruyama, MDI workshop, 6 Jan.05 Sync radiations in 2mrad crossing

Minimum Veto Angle Primary requirement from SUSY

Choice of L*

Schedule of workshops

I November 2004, EUROTeV Kick-off meeting at DESY Ø 9-12 November 2004, ACFA-LC workshop, Taipei 13-15 November 2004, ILC workshop at KEK; WG4
6-8 January 2005, MDI mini-workshop at SLAC © 18-22 March 2005, LCWS05 at SLAC 20-23 June 2005, BDIR workshop at Oxford/RHUL
II-14 July, 8th ACFA LC workshop at Taegue, Korea

WORKSHOP Machine-Detector Interface at the International Linear Collider

January 6-8, 2005

SLAC

Home Committees Program List of Registrants Accommodations Travel Information Tourism Information Visa Information Location ATF2 Mini-Workshop Workshop News Computing

Scope and Goals

- Evaluate "experiment impact" of the ILC design. The ILC Design impacts the ILC Detector and Physics, beyond just the delivered luminosity and energy reach. The Machine-Detector Interface (MDI) group needs to evaluate how the ILC design impacts the Experiment (Detector design and physics capabilities) and how the Experimental requirements impact the ILC design.
- Give input to both the *ILC Beam Delivery Group* and the *World-wide Study for ILC Physics and Detectors* regarding critical choices, beam tests, the CDR and the TDR.
- Address viability and issues for crossing angle choices: head-on, 300-mrad vertical, 2-mrad horizontal, 7-mrad horizontal, 12-25 mrad horizontal
- Form international sub-groups working on individual topics, and identify available and needed resources.
- This Workshop is an important milestone: preparing for the CDR and for subsequent meetings at *LCWS* (March 2005) and *Snowmass* (August 2005).

Latest Workshop News ...

Workshop Photos

Under the GDI/GDE (Global Design Initiative/Effort)

MDI

Detector /Physics

WWS detector R&D panel concept costing panel concept support MDI panel

collective view of requirements from detector /physics Machine ILC-WG4 for BDS Design

MDI consists of WWS-MDI and ILC-WG4, and it is coordinated by the MDI panel ?

MDI sub groups

Main MDI topics \implies session convenors

M.Hildreth,

T.Omori, K. Moffeit, K. Mönig

W. Lohmann, H. Yamamoto

S. Boogart, K. Kubo

Y.Sugimoto, M. Woods

- Energy and luminosity spectrum
- Polarimetry
- Very forward region
- Backgrounds **A.Sugiyama**, K. Büsser, T. Maruyama

E.Torrence,

- IR layout, crossing-angles P.bambade, T. Tauchi, A. Seryi
- Beam RF effects

Layout of Two BDSs: ILC-WG1 ?