ILC測定器研究会2005.3.4

Final Focous magnet Options

Y. Iwashita Accelerator Laboratory, Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokanosho, Uji, Kyoto 611-0011, JAPAN iwashita@kyticr.kuicr.kyoto-u.ac.jp http://wwwal.kuicr.kyoto-u.ac.jp

Contents

- FFQ options Design choices Technology choices Normal magnet quadrupole Superconducting magnet quadrupole Permanent magnet quadrupole Hybrid magnet quadrupole R&D issues and Summary for FFQ RF kicker for head-on-collision Rough idea FINEMET
 - R&D issues

Design Choices

- It depends on
 - gradients for QD and QF
 - L* and, L** between QD and QF
 - crossing angle
- L* must be determined by detector interface
- L** can be very large
 - Pros : QF out of detector, shorter quads, smoother envelope, narrower SR
 - Cons : horizontal chromaticity (any other ?)
- Crossing angle?

Relative positions of the incoming & extraction magnets

Extraction quad requirements with a 20mr crossing angle.

• To minimize beam size, quad apertures and dimensions in the extraction line, the quad focusing has to start soon after the IP. Even so the beam width gets very large.

• But, the first extraction quad has to be placed at sufficient distance from IP where it can realistically fit without interference with elements of the incoming beamline.

• Two options of extraction optics are compared below - with 8 and 15 m space between IP and the first extraction quad. Lattices from Yuri Nosochkov, SLAC

	L (m)	GL (T)	R (mm)	$\Delta x \ (mm)$
Q1	5.107	254.0	20	160
Q2	7.124	-290.4	25	268
Q3	9.312	231.7	32	417
Q4	10.134	-195.0	42	609
Q5	5.765	96.8	48	818
Q6	10.102	-45.9	154	2881
Q7	9.731	41.5	164	3089

Quads in 8 m option

Quads in 15 m option

	L(m)	GL(T)	R (mm)	$\Delta x (mm)$
Q1	6.004	165.6	29	300
Q2	9.392	-216.5	35	426
Q3	9.673	185.7	42	620
Q4	11.270	-169.3	53	819
Q5	6.648	88.4	60	1051
Q6	10.717	44.8	167	3132
Q7	10.354	-40.7	178	3352

· The field in all tables is for 500 GeV/beam.

• Length L is for unsliced quad. After slicing, it is desirable to keep the same combined length of shorter quads and gaps.

Horizontal separation ∆x is between two beams at the front face of a quad, closest to IP, for 20 mrad crossing.

Cherrill Spencer, SLAC. MDI Workshop Jan '05

Unusual Quad Styles for areas with close adjacent beams

Q2 in PEPII

Quad for HERA Luminosity Upgrade.

Field-free region for secondary beam. Primary beam passes through center of regular quad, bore radius=47.8mm

Cherrill Spencer, SLAC. MDI Workshop Jan '05

Extraction quad requirements with a 2mr crossing angle.

- If the crossing angle is only 2mr then the horizontal distance between the incoming and extracted beam, ∆x, becomes even smaller, forcing even stranger quadrupole designs.
- For example, based on a very preliminary and not fullydeveloped lattice with a 2 mr crossing angle and the first extraction quad at 10m from the IP (lattice from Yuri Nosochkov) these are the requirements on the first three extraction quads, for 250Gev/beam:

Quad	L (m)	GL(T)	R mm	$\Delta x mm$
QFEX1	4.143	127.9	56	21
QDEX2	4.161	-166.4	56	52
QFEX3	2.072	82.9	63	68

This set of magnet requirements is just one of many possible sets.

Septum Half Quad from TESLA TDR for 1st extraction quad

Extracted beam passes through HALF quad *to the right of its center* and so beam sees a dipole field on top of the quad field. The magnet's effect on the beam shape has to be modelled using some field data from a magnet simulation program.

Extracted beam horizontal profile is NOT Gaussian, nevertheless outlying particles will hit face of magnet if half-aperture is too small.

Side-by-side Quads: a different approach, using permanent magnets

Idea from Y.Iwashita, Kyoto University

Conceptual figure. Very preliminary.

Vary gap height to vary gradient

Gradient variation with x for side-by-side quads

Cherrill Spencer, SLAC. MDI Workshop Jan '05

Larger Bores for SC quad

- LHC low beta quad
- LHC upgrades
 using Nb₃Sn

Small bore double aperture SC quad

Cross Section at IP End with 50 mm Beam Separation

Xing angle = $50 \text{ mm} / \text{L}^*$

 $G_{in} = 144 \text{ T/m}, \emptyset_{in} = 20 \text{ mm}$ $G_{out} = 50 \text{ T/m}, \emptyset_{out} = 20 \text{ mm}$

Outer coil (single strand) is tapered to follow the exit trajectory

Outer coil can accomodate a skew quad layer

Compact SC Quad.

Inner Beam Tube 20 n	nm ID	QDO Coil Parameters
Outer Cryostat Tube 114 n	nm OD Inner: 5 double layers,	Inner Quad 63 T/m
Cryostat Outer Surface	single strand conductor	Outer Quad 81 T/m
	Outer: 4 double layers, of seven strand cable	Total Quad 144 T/m
Heat Shield		
Vertical Support	G10, S-Glass & Design Cont coil windings Copper inside	& Epoxy cept: Two independent 5. Integrated helium flow. e inner coil support tube.
Horizontal	He Flow Space	
Support		
	Coil Support Tubes	

Small bore single aperture SC quad

Cross Section at IP End with Beam offsets = ±12.25 mm

Cross Section at IP End with Beam offsets = ±28 mm

Sextupole-like : Xing = 7 mrad G = 140 T/m

Octupole-like : Xing = 10 mrad

Common features : • same gradient in and out • large non-linearities

Adjustable PM Quad. Four DC motors

PM Quad for Various L* & X-ing Angles

Q-size	φ160mm	φ160mm	¢160mm	φ100mm
¢20mm	212T/m(max) -23T/m (min)	175T/m (max) -77T/m (min)	208T/m(max) 26T/m (min)	186T/m(max) 31T/m(min)
¢14mm	296T/m	242T/m	282T/m	272T/m

NBS=No Beam Separation, SBS=Small Beam Separation MBS=Medium Beam Separation, LBS=Large Beam Separation

Hybrid Quad. (practical option)

Technology Choice

	Head on 0.3mrad	2mrad	7mrad	>13mrad
EM	0		0	
SC	0	0		0
PM	0	0	0	0

R&D

EM

- Power dissipation.
- Cooling.

SC

- Study of axis vibration
 Nb3Sn technology
 Beam-beam losses and quad cooling PM
- Study of radiation damage effect (PS?) Study of thermal effect (now preparing)
- Hybrid Q

All Qs

- Optimizing the design for each L* , Crossing angle and bore radius.
- Optics study for optical design.
 BEAM-BEAM LOSSES
- Support and stabilisation

Summary

	EM	SC	PM
Pros.	• Off the shelf for usual shape	 Large Gradient Large bore radius 	 Strong in small bore Low power consumption
Cons.	 Large power consumption Lengthy 	 Axis Vibration Beam-beam losses and quad cooling (Heat load?) 	• Stability (radiation damage, temperature coef.)

RF Kicker for Head-on-Collision Background: Head-on is desirable for physics, BUT e⁺ and e⁻ cannot be separated by STATIC magnet

Extraction line (head-on) at TESLA-TDR

Time Structure of Beams

Sketch of a Kicker

DC+3MHz (+6MHz)

Variant

Double C-type Better shielding Step at center?

0.25T x L=4m 1 mrad

Advantage and Disadvantage

Advantage

- Can attain Head-on collision.
- Easier than Crab Cavity.

Disadvantage

- If stopped, beam will hit the other side. (Failure of all the 133 units does not likely happen.)
- It may kick the incoming beam.

RF kicker Flux plot (isotropic material)

Anisotropic core (cutcore)

RF kicker Cut core Anisotropic CYCLE = 3

Two sample cores are ordered

Fabricated FINEMET core (Ready 3/1)

Untuned cavity at Kyoto U.

Led to the excavation of FINEMET

FT-3L

【ファインメット®と従来材の磁気特性(ノーカット・トロイダルコア)】

	材 料	板厚 (μm)	B _s (T)	B _r /B _s (%)	H _c (A/m)	μ _{r(1kHz)} (x10 ³)	μ _{r(100kHz)} (x10 ³)	P _{cv} (kW/m³)	λ _s (x10 ⁻⁶)	T₀ (℃)
7	FT-1H	19	1.35	90	0.8	5.0	1.5	950		
T L	FT-1M	10	1.35	60	1.3	70.0	15.0	350	+ 2.3	~570
- 2	FT-3H		1.23	89	0.6	30.0	5.0	600		
メッ	FT-3M	18	1.23	50	2.5	70.0	15.0	300	≃0	~570
۲®	FT-3L		1.23	5	0.6	50.0	16.0	250		
Fe	基アモルファス	25	1.56	83	2.4	5.0	5.0	2200	+ 27	415
Co基アモ	Eルファス高透磁率材	18	0.55	5	0.3	115.0	18.0	280	~0	180
Co基アモ	Eルファス高角形比材	18	0.60	85	0.3	30.0	10.0	460	≃0	210
3	%Siケイ素鋼	50	1.90	85	6.0	2.7	0.8	8400	- 0.8	750
6.	5%Siケイ素鋼	50	1.30	63	45.0	1.2	0.8	5800	- 0.1	700
504	%Niパーマロイ	25	1.50	95	12.0	—	—	3400	+ 25	500
80%Ni/1	ペーマロイ 高透磁率材	25	0.74	55	0.5	50.0	5.0	1000	~0	460
80%Ni/1	ペーマロイ 高角形比材	25	0.74	80	2.4	_	—	1200	~0	460
Mn-Znフェライト高透磁率材		—	0.44	23	8.0	5.3	5.3	1200	- 0.6	>150
Mn-Zn :	フェライト低損失材	—	0.49	29	12.0	2.4	2.4	680	- 0.6	>200

注1) B_s、B_r / B_s、H_s:直流磁気特性(H_m=800A/m, 25°C)、μ_{r(1kHz)}:比透磁率(1kHz, H_m=0.05A/m, 25°C)、

μ_{r(100kHz)}:比透磁率(100kHz, H_m=0.05A/m, 25°C)、P_{ov}: コアロス(100kHz, B_m=0.2T, 25°C)、λ_s: 飽和磁歪定数、T_o: キュリー温度 注2)上記特性は、当社での測定による

High B, low core loss, high Tc

Power Estimation

Stored Energy for a core : W=0.75 [J] Coil current for 0.25T : I = 4 [kA] Inductance $(LI^2/2=W)$: L= 94 [nH] Capacitance ($L C = \omega^{-2}$) :C = 30 [nF]Voltage ($C Vc^2/2=W$) : Vc = 7 [kV]:Cv=300 [cc] Core Volume Core Loss Pcv (3MHz, 0.2T) : Pcv=10⁸W/m³ Core Loss P (3MHz, 0.25T) : P = 45kW/core

Waveform 1: simple cosine

 $f(t) = 1 - \cos(\omega t)$

Phasing division ≥ 4 1 Section = 1.0m Both end x =0.50m A = 2.47×10-7

Waveform 2: two cosines

Phasing division≧1 x = 2.0 m $\theta_x = 4.65 \times 10^{-8}$ $< 3.0 \times 10^{-7}$ Very flat base. **But difficult?**

Phasing division ≥ 2 x = 1.0m $\theta_x = 9.54 \times 10^{-8}$ $< 3.0 \times 10^{-7}$ No DC System. Not at the center

Compensation by Phasing

- Phasing = different $phase_{6e-806}$ at each section. 4e-806
- Apply each bottom to incoming beam
- No need for 133 division
 → divide into some group

Advantage of sine option

Can apply the harmonics separately.
 Waveform ω+2ω needs 2 groups
 → Separate RF's are useful for
 Easier construction & Phasing

Expansion: 500GeV→1TeV

- ◆ Kicker's location depends on the harmonics.
 → multiple kickers can distribute.
- Operate 1 kicker for 500GeV
- Operate 2 kickers for 1TeV

RF Stability

- Amplitude jitter ∼10⁻² has little effect
- Phase fluctuation is dominant.

for 2 grouped separate RF system,

phase	1×10-3	4×10 ⁻³	1×10 ⁻²	3×10 ⁻²	[rad]
ω+2ω	1.00	1.15	1.50	3.16	×10 ⁻⁷ [rad]
ω+3ω	2.59	2.99	3.89	8.20	×10 ⁻⁷ [rad

Phase stability within 10⁻³ rad is desirable.

Issues on RF kicker

- More investigation on material for kicker core (FINEMET)
- Investigate for vertical kick by fringing field
- Beam chamber has to be made of insulator.
 <Shield by thin metal(copper)?>
- Estimated RF power: 45kWpk/core, (0.25Tx4m, 1mrad) x (133 cores, 133 Amp's)
- Dark current issue
- Abort kicker (MPS)
- Septum Magnet ?
- BPM? (directional BPM?)