Local Run Control

version gui-v2.3

The local run control is intended to be used when running in standalone mode, i.e. with only the TPC
readout. This is the case e.g. if one wants to do a pedestal run, local data taking, or some test. The local
run control user interface is shown in figure LCR-1. In figure LCR-2 is the program flow and
communication with the ilcserver shown. It is written in Java, and use a thread for receiving
information from the ilcserver. The IP-address and port on the ilcserver machine is read from the file
ilcdaq.txt, to be placed in the running directory.

SERVER 130.235.185.182

PORT 8000
e SERVER xxxx.xxxx.xxxx.xxxx — [P-number of the ilcserver
e SERVER.PORT n — port number that the ilcserver listens on.
e PORT n — port number that the local run control listens on.

While the DAQ is stopped can one switch on/off ('PowOn'/'PowOff") the front end cards. It is not
possible to change the settings, this has to be done in the configuration file of the RCU (in rcu-<id>.cfg
item RCU.POWER). The colors indicate the knowledge of the power status:

e light blue: FEC should be off according to the configuration file. Hardware status unknown.
e dark blue: FEC should be on according to the configuration file. Hardware status unknown.
e red: FEC is off according to the hardware status flag in the RCU.

e green: FEC is on according to the hardware status flag in the RCU.

e others: active FEC according to RCU is not same as found an ALTRO bus.

While the DAQ is stopped can one load the settings for the PCA16 chips, 'Pcaload'. In contrast with
the power can one change the settings. These are stored in a configuration file by the readout program.
It is not possible to read the values loaded into the PCA16, what is shown is always the content of the
configuration file.

Since it takes some time to power on and load the PCA settings is this not done automatically, it must
be done manually in the way described, before any DAQ handling is started. The reason is to avoid
delays in the run handling for local/global run control for things not often changed.

What follows is valid only for the local run control.

There are three run types, to be specified before start of run:
e physics — normal data taking, in this mode must the readout program configure a physics trigger
e pedestals — in this mode must the readout program configure a pulser trigger/random trigger.
e test —not implemented

Pedestal subtraction and zero suppression can be specified, zero suppression will force pedestal
subtraction. For pedestal runs are these disabled.

To enable the readout to send events for the monitoring task must the value in 'Monitor' be nonzero.
After a request for an event from the monitoring program is this the number of events taken before a
new request is served, i.e. a sort of downscaling. There are two options 'Read events' and '"Monitor

events'. If 'Read events' then the run is automatically stopped when this number of events has been
read. If 'Monitor events' then the run is automatically stopped when this number of events has been sent
to the monitoring task.

By checking 'Logging' will a data file be written by the readout program.

A run comment can be added to the run log file, which is written by the readout program. It will be sent
when pressing '--- Write run comment ---', it is not written at start of run but immediately.

In the message window is the communication with the ilcserver shown.

Power settings

23456789 1001131415676 L2120 425262 72525051 0123456789 100UAANGERI220040506272 05151
_II_I RCUO CU1| PowOn || PowOff
I 1 1 ;o .- T T A I A 3 oA 1 5

PCA settings

Polarity [] Shutdown Preamp enable EE Gain EE Shaper OE Decay time

[FUUE-US=-21 [FUS 57] RETEVIE DOWeT STdars. =
DAO Active [200B-08-21 14:05:37] SRV *POW SO ORCUOZ2PO0OSI 2RCUL OFPL 052 2RCU20P2 053 2RCUZ 0P 0|
[200B-08-21 14:05:37] Retrieving PCA settings. .

[200B-08-21 14:05:37] SRV *PCA SE 129 DAC OERR O
[200B-08-21 14:05:40] Starting run
[2008-08-21 14:05:41] SRV *5TATUS DA 1 RUIN 1 LOG O MOM 1 EVT O TYPE 0 MODE 1 RUNNE 2642 ERR

[2008-08-21 14:05:47] Retrieving status...
Running [2008-058-21 14:05:47] SRV *5TATUS DAS 1 RUN 1 LG O MO 1 EVT 4 TYFE 0 MODE 1 RUNIMNE 2642 ERR—
[2008-08-21 14:05:49] Retrieving status...
[2008-08-21 14:05:49] SRV *5TATUS DA 1 RUN 1 LOG 0 MON 1 EVT 5 TYPE 0 MODE 1 RUNINE 2642 ERF|
[2008-08-21 14:11:40] Retrieving status...
[2008-08-21 14:11:40] SRV *3TATUS DA 1 RUN 1 LOG 0 MON 1 EVT 176 TYPE 0 MODE 1 RUNINE 2642 E|_
[2008-08-21 14:35:15] Retrieving status...
[2008-08-21 14:35:15] SRV *5TATUS DA 1 RUN 1 LOG O MON 1 EVT 8§65 TYFE O MODE 1 RUNNE 2642 E
[2008-08-21 14:35:20] Retrieving status. .
[2008-08-21 14:35:20] SRV *STATUS DAC 1 RUN 1 LOG 0 MOM 1 EVT 867 TYFE 0 MODE 1 RUNNE 2642 F |

-

q 1 D]
SCRIPT
Runh comment (max 240 characters):
Events: 867
Rum:2642

[2008-08-21 14:03:40]

Exit | --- Write run comment --- |

Run type: ® Physics) Pedestals 0 Test

Run mode: [Logging
Monito 1| Read events - o]

Figure LCR-1: Local Run Control user interface

The readout can be in several states: the DAQ is running/stopped, a run is running/stopped/paused.
These states is controlled from the buttons on the local run control display. The meaning of the buttons
change depending on the state.

e Start DAQ — this will tell the readout program to open DRORC devices, setting up memories ...

e Stop DAQ — close devises and disable memories.
e Start run — start a run

e Pause run — pause an active run

e Continue run — continue an active run

e Stop run — stop an active run

e SCRIPT - load a script to be executed

A green button can be pressed, a red is disabled, and a blue indicates the system is busy. The status of
the readout can be requested with the 'Status' button. At a regular interval is the readout task sending
the number of events taken. In case an error is encountered the 'Status' button is turned into red.

SCRIPT is a feature to load a script. On load is the syntax checked and if no errors found then the Start
DAQ button is turned into a Start SCRIPT, and SCRIPT to abort script. The script file must have the
extension .run. The script is executed line by line. The syntax is:

SETTINGS Initial setup

ERROR.RETRY 30 Number of times to retry in case of error (NOT WORKING FOR ALL ERRORS)
FEC.ON Power on active FEC

END

skeskeseskeskeosk

RUN 1 GAIN 0 SHAPER 0 DAC 0
#

SETTINGS
PCAPOLARITY 1

Setup for run

PCA polarity bit

PCA.SHUTDOWN 0
PCAPREAMP 0
PCA.GAIN 0
PCA.SHAPER 0
PCA.DAC 0
PCA.LOAD

END

RUNNING
RUN.PEDESTALS
DAQ.START

PCA shtdown bit

PCA preamp enable bit

PCA gain bits (0-3)

PCA shaper bits (0,1,3,7)

PCA decay time DAC setting (0-2500)
Load settings to PCAs

Run parameters
Do a pedestal run

Start DAQ

#RUN.EVENTS 500
RUN.MEVENTS 500
RUN.MONITOR 1

Number of events to read
Number of events to monitor

Send Nth (here “every”) event for monitoring

RUN.START Start Run
DAQ.STOP Stop DAQ
END

The protocol between the local run control and the ilcserver are text strings sent over the network, as
shown in figure LCR-2. When the run control starts up it sends *SRV to the ilcserver, and starts a
thread listening for incoming packets from the ilcserver. The ilcserver sends back *STATUS when

receiving the *SRV command. At Start DAQ is *START sent, after receiving *STATUS, is *POW sent
to retrieve the current power settings of FEC, and finally *PCA to get the PCA16 settings used. *POW
and *PCA is also sent when when pressing the 'PowOn'/'PowOff and 'Pcaload'. The readout sends
back the same string with status arguments. 'Stop DAQ' will send *STOP, 'Start Run' *SOR, 'End Run'
*EQOR, 'Pause' *PAUSE, 'Continue' *CONT, for these will the readout send back *STATUS.

*CONT - continue a paused run.
no arguments, ilcserver returns *STATUS.
*EOR - end an active run.
no arguments, ilcserver returns *STATUS.
*PAUSE - pause an active run.
no arguments, ilcserver returns *STATUS.
*PCA —load/get PCA16 settings.
if no argument get the settings used. Arguments are
*PCASRnDACn
e SR n—nis the pattern for the shift register setting individual bits to PCA
e DAC n—nisthe DAC value to set for the decay time
*POW — power on/off front end cards.
It has one argument when sent from run control:
*POW n — n=0,get current status, n=1 power on active FEC, n=2 power off all FEC
The readout sends back:
*POW S0 n0 RCUO mO S1 n1 RCU1 m1 S2n2 RCU2 m2 S3 n3 RCU3 m3
Sn nX = Source of information RCU id n, nX=0 from hardware, nX=1 from file, nX=2 no information
RCUn mX = pattern giving status for RCU id n, bit on = power is on, bit off = power is off.
*SOR- start of run.
no arguments, ilcserver returns *STATUS.
*SRYV — sent by local run control to start communication.
no arguments, ilcserver returns *STATUS.
*START - start data acquisition.
*START CONTROL n MODE n TYPE n
e CONTROL n —n=1 I'm the local run control (needs to be rethought of!!).
e MODE n — n=1 physics, n=2 pedestals, n=3 test (not yet used).

e TYPE n—n=0 no pedestal subtraction/zero suppression, n=1 pedestal subtraction, N=3 pedestal
subtraction and zero suppression.

*STATUS — current status.

*STATUS is sent without any arguments from the run control to get the current status, it has a number
of arguments as received from the ilcserver.

*STATUS DAQ n RUN n LOG n MON n EVT n MODE n RUNNB n ERR n

e DAQ n-—DAQ status; n=0 DAQ is stopped, n=1 DAQ is active

e RUN n - RUN status; n=0 RUN is stopped, n=1 RUN is running, n=2 RUN is paused
e LOG n - Logging status; n=0 no data file written, n=1 data file written

e EVT n - Events taken

e TYPE n - run type; n=0 no pedestal subtraction/zero suppression, n=1 pedestal subtraction, n=3
pedestal subtraction and zero suppression.

e MODE n —run mode; n=1 physics, n=2 pedestals, n=3 test
e RUNNB n —n = the run number as given by the readout program

e ERR n - error status; n=0 no error, n>0 some obscure error number

*STOP — stop data acquisition.

no arguments, ilcserver returns *STATUS.

*UPD — update information from readout.
sent by the readout at a regular interval.
*UPD EVT n

e EVT n - n=number of events taken

FILES

DagPanels.java JAVA source code

ilcdaq.txt configuration file

readme.txt updates made

genscript.sh script to generate a .run script

COMPILE AND RUN

javac DagPanels.java

java DagPanels

e e e e — e e e e e e =4

. ILCSERVER | . RUN CONTROL |

J Start network =I *SRVE Start network '
; Retreive status E*STATUS '= Fork listener .
: | *POW, i
4R etreive status | =~ (Get power status | !
. $PCA§; (Get PCA settings
 SetGet - POW, P owOn/PowOIt) |
4{ ScuGet |- PCAL ™ Pcaload)|
=) *START -
{ To/from |- *STOP; | StatDAQ
'\ Readout TFSTATUS | Stop DAQ :
P *POW, §
: etirom [L :
'4 Readout i+ *PCA% . i
! | % L :
- $SORE Start Run |
:‘ Toffrom |4 - EOR Stop Run
. Readout | PAUSE | payse Run |
i — *CONT; Continue Run .
| *STATUS i '
{ Celir 5 5
4 Readout |+—>1AISL STATUS |
N From readout I*UPD [Events: <nb> '

Figure LCR-2: Local Run Control communication with ilcserver.

	Local Run Control
	FILES
	COMPILE AND RUN

