Measurement of Higgs couplings at the ILC

----on behalf of the ILC Physics & Detector Study ICHEP 2014, Jul. 2-9 @ Valencia

For ILC Higgs Physics — TDR vol. 2 & vol. 4; ILC Higgs White Paper

Post discovery of a Higgs boson — What we want to know

- **1.** $H(125) = H_{SM}$?
- 2. Why is μ^2 negative?
- 3. Is the cancelation in M_H radiative corrections natural?
- 4. What is the dynamics responsible for EWSB?

learn as much as possible about H(125)!

ILC is built to reveal the nature of H(125)

Why Precisions?

Multiplet structure :

- Additional singlet?
- Additional doublet? $(\phi + \phi')$
- Additional triplet? $(\phi + \Delta)$
- Underlying dynamics :
 - Why did the Higgs condense?
 - Weakly interacting or strongly interacting?
 = elementary or composite ?
- Relations to other questions of HEP :
 - $\phi + S \rightarrow (B-L)$ gauge, DM, ...
 - $\varphi + \varphi' \rightarrow \text{Type I} : m_v \text{ from small vev, } \dots$
 - → Type II : SUSY, DM, ...
 - → Type X: m_v (rad.seesaw), ...

 $(\Phi + S)$

- $\phi + \Delta \rightarrow m_v$ (Type II seesaw), ...
- $\lambda > \lambda_{SM} \rightarrow EW$ baryogenesis ?
- $\lambda \downarrow 0 \rightarrow \text{inflation}$?

K. Fuji @ Pheno2014

- SM is a minimal solution, there are many other possibilities! TeV scale new physics is strongly motivated.
- deviations on various Higgs couplings are window to see new physics.
- * Haber's decoupling limit, deviation ~ m_h^2/M^2 .

$\Delta g/g \sim O(1\%) @ 1 TeV$

ILC comprehensive Higgs program, key is to measure mass coupling relation model independently

three well-known thresholds, a choice of physics

three well-known thresholds, a choice of physics

three well-known thresholds, a choice of physics

three well-known thresholds, a choice of physics

ZH @ 250 GeV

- Higgs mass, spin, CP
- Absolute HZZ coupling
- Br(H-->bb, cc, gg, $\tau\tau$, WW^{*}, ZZ^{*}, $\gamma\gamma$, γ Z)

three well-known thresholds, a choice of physics

800 1000 1200 1400

Center of Mass Energy / GeV

0.

0

400

600

ZH @ 250 GeV

- Higgs mass, spin, CP
- Absolute HZZ coupling
- Br(H-->bb, cc, gg, ττ, WW*, ZZ*, γγ, γZ)

(talk by I.Garcia) tt, vvH@ 350 GeV

top physics, indirect top-Yukawa HWW, Total width

three well-known thresholds, a choice of physics

0

400

600

800 1000 1200 1400

Center of Mass Energy / GeV

ZH @ 250 GeV

- Higgs mass, spin, CP
- Absolute HZZ coupling
- Br(H-->bb, cc, gg, ττ, WW*, ZZ*, γγ, γZ)

tt, ννH@ 350 GeV (talk by I.Garcia)

top physics, indirect top-Yukawa
HWW, Total width

ZHH, ttH @ 500 GeV

- Direct top-Yukawa coupling through ttH
- Higgs self-coupling through ZHH
- Total width —> all Higgs couplings

three well-known thresholds, a choice of physics

ZH @ 250 GeV

- Higgs mass, spin, CP
- Absolute HZZ coupling
- Br(H-->bb, cc, gg, ττ, WW*, ZZ*, γγ, γZ)

tt, ννH@ 350 GeV (talk by I.Garcia)

top physics, indirect top-Yukawa
HWW, Total width

ZHH, ttH @ 500 GeV

- Direct top-Yukawa coupling through ttH
- Higgs self-coupling through ZHH
- Total width —> all Higgs couplings

vvHH, ttH @ 1 TeV

- accumulate much more Higgs events
- H-->μμ accessible
- improve Top-Yukawa coupling
- Higgs self-coupling through vvHH

three well-known thresholds, a choice of physics

 $fL \cdot dt = 250 / 1150 \text{ fb}^{-1}$

0.2

600

400

800 1000 1200 1400

Center of Mass Energy / GeV

Higgs mass, spin, CP Absolute HZZ coupling Br(H-->bb, cc, gg, ττ, WW*, ZZ*, γγ, γZ) (talk by I.Garcia) tt, vvH@ 350 GeV top physics, indirect top-Yukawa HWW, Total width ZHH, ttH @ 500 GeV $\int L dt = 500 / 1600 \text{ fb}^{-1}$ Direct top-Yukawa coupling through ttH Higgs self-coupling through ZHH Total width —> all Higgs couplings vvHH, ttH @ 1 TeV $\int L dt = 1000 / 2500 \text{ fb}^{-1}$

- Accumulate much more Higgs events
- H-->µµ accessible

ZH @ 250 GeV

- improve Top-Yukawa coupling
- Higgs self-coupling through vvHH

three well-known thresholds, a choice of physics

400 600 800 1000 1200 1400 Center of Mass Energy / GeV ZH @ 250 GeV $\int L \cdot dt = 250 / 1150 \text{ fb}^{-1}$

- Higgs mass, spin, CP
- Absolute HZZ coupling
- Br(H-->bb, cc, gg, ττ, WW*, ZZ*, γγ, γZ)

tt, vvH@ 350 GeV (talk by I.Garcia)

top physics, indirect top-Yukawa
HWW, Total width

ZHH, ttH @ 500 GeV $\int L dt = 500 / 1600 \text{ fb}^{-1}$

- Direct top-Yukawa coupling through ttH
- Higgs self-coupling through ZHH
- Total width —> all Higgs couplings

vvHH, ttH @ 1 TeV $\int L dt = 1000 / 2500 \text{ fb}^{-1}$

- accumulate much more Higgs events
- H-->μμ accessible
- improve Top-Yukawa coupling
- Higgs self-coupling through vvHH

P(e-,e+)=(-0.8,+0.3) @ 250 - 500 GeV P(e-,e+)=(-0.8,+0.2) @ 1 TeV

beam polarisation like a luminosity doubler (vvH)!

4

JL·dt = Baseline (TDR is just beginning) / Luminosity Upgrade (increasing #bunch, collision rate)

Observables to measure at ILC

***** σ_{ZH}

- * $\sigma_{ZH} \times Br(H \longrightarrow bb), \sigma_{\nu\nu H} \times Br(H \longrightarrow bb)$
- * $\sigma_{ZH} \times Br(H \longrightarrow cc), \sigma_{\nu\nu H} \times Br(H \longrightarrow cc)$
- * $\sigma_{ZH} \times Br(H \longrightarrow gg), \sigma_{\nu\nu H} \times Br(H \longrightarrow gg)$
- * $\sigma_{ZH} \times Br(H \longrightarrow WW^*), \sigma_{\nu\nu H} \times Br(H \longrightarrow WW^*)$
- * $\sigma_{ZH} \times Br(H \longrightarrow ZZ^*), \sigma_{\nu\nu H} \times Br(H \longrightarrow ZZ^*)$
- * $\sigma_{ZH} \times Br(H \longrightarrow \tau\tau), \sigma_{\nu\nu H} \times Br(H \longrightarrow \tau\tau)$
- * $\sigma_{ZH} \times Br(H \longrightarrow \gamma \gamma), \sigma_{\nu\nu H} \times Br(H \longrightarrow \gamma \gamma)$
- * $\sigma_{ZH} \times Br(H \longrightarrow \mu\mu), \sigma_{\nu\nu H} \times Br(H \longrightarrow \mu\mu)$
- * $\sigma_{ZH} \times Br(H \longrightarrow Invisible)$
- * $\sigma_{ttH} \times Br(H \longrightarrow bb)$
- * $\sigma_{ZHH} \times Br^2(H \longrightarrow bb), \sigma_{\nu\nu HH} \times Br^2(H \longrightarrow bb)$

each running stage offers an independent set of measurements

Observables to measure at ILC

each running stage offers an independent set of measurements

Full Detector Simulation of ILD & SiD

(see detector talks by T.Suehara & M.Oriunno)

Driven by Particle Flow Algorithm, High Granularity, $\sim 4\pi$ Coverage

momentum resolution:

$$\sigma_{1/p_T} \sim 2 \times 10^{-5} \text{ GeV}$$

▶ driven by recoil mass measurement ZH-->l+l-X.

jet energy resolution: $\sigma_E/E \sim 30\%/\sqrt{E} \sim 3-4\%@100 \text{GeV}$

• driven by 3σ separation of the hadronic decay of W and Z bosons.

impact parameter resolution:

$$r_{\phi} = 5 \ \mu \mathrm{m} \oplus \frac{10}{p(\mathrm{GeV}\sin^{3/2}\theta)} \ \mu \mathrm{m}$$

Iriven by excellent tagging and untagging of heavy flavor jets (H-->bb, cc and gg).

 σ

TDR Vol. 4 — Detector

n

ILC 250 GeV

HZZ coupling The flagship measurement of ILC250

250 fb⁻¹@250 GeV

$$\Delta \sigma_{ZH} / \sigma_{ZH} = 2.6\%$$

 $\Delta m_H = 30 \,\mathrm{MeV}$

 $(Z \rightarrow e^+e^- \text{ combined, scaled from mH}=120 \text{ GeV})$

S.Watanuki @ LCWS13, H.Li, et. al, arXiv:1202.1439

well defined initial states
recoil mass technique
tagged Higgs without looking into H decay
precision mass measurement
absolute cross section of e⁺e⁻ -> ZH

key ---> Model-independent measurement of σ_{ZH}, hence HZZ coupling

$$Y_1 = \sigma_{ZH} \propto g_{HZZ}^2$$

HWW coupling

 $Y_{2} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to b\bar{b}) \propto g_{HWW}^{2} \cdot \operatorname{Br}(H \to b\bar{b})$ $Y_{3} = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) \propto g_{HZZ}^{2} \cdot \operatorname{Br}(H \to b\bar{b})$

$$g_{HWW} \propto \sqrt{\frac{Y_2}{Y_3}} \cdot g_{HZZ} \propto \sqrt{\frac{Y_1Y_2}{Y_3}}$$

- it's essential to separate vvH from ZH at lower energy by fitting missing mass (+ angular distribution is ongoing).
- * much better measured at higher energies.
- AgHWW is actually the limit to all other couplings precisions except gHZZ.

8

C. Duerig, J. Tian, et al. LC-REP-2013-022, arXiv: 1403.7734 ILC Higgs White Paper, arXiv: 1310.0763

Higgs total width Γ_{H}

model free, one of the great advantages of ILC

C. Duerig, J. Tian, et al. LC-REP-2013-022, arXiv: 1403.7734

Higgs couplings to bb, cc and gg

b-vertices and c-vertices can be well reconstructed and separated @ ILC

H. Ono, et. al, Euro. Phys. J. C73, 2343; LC-REP-2013-005

 $\sigma_{ZH} \cdot \text{Br}(H \to gg) \propto g_{HZZ}^2 g_{Haa}^2 / \Gamma_H$

Template Fitting

Invisible Higgs decay

 $e^+ + e^- \rightarrow ZH \rightarrow l^+ l^- / q\bar{q} + \text{Missing}$

A. Ishikawa @ Snowmass Energy Frontier Workshop, Seattle, June 30 - July 3, 2013

Ηττ coupling

 $e^+ + e^- \rightarrow ZH \rightarrow l^+ l^- / q\bar{q} / \nu\bar{\nu} + \tau^+ \tau^-$

sophisticated 1/3-prong τ finder.
τ vertex detectable.
neutrino momenta recoverable by using collinear approximation (or 6C fitting, ongoing) for Z—>II, qq.

 $\sigma_{ZH} \cdot \operatorname{Br}(H \to \tau^+ \tau^-) \propto \frac{g_{HZZ}^2 g_{H\tau\tau}^2}{\Gamma_H}$

S. Kawada, et. al, LC-REP-2013-001, arXiv: 1403.7008

Higgs couplings to yy and µµ

***** limited by very small BRs, better at higher energies via WW-fusion production $e^+e^- \rightarrow vvH$.

- * very characteristic signals (events with only two high energy muons or photons).
- * background dominated by irreducible continuous SM process.
- Imited by statistics, good synergy with LHC measurements.

$$\sigma_{\nu\bar{\nu}H} \cdot \text{Br}(H \to \mu^+ \mu^-) \propto \frac{g_{HWW}^2 g_{H\mu\mu}^2}{\Gamma_H}$$

$$\sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to \gamma\gamma) \propto \frac{g_{HWW}^2 g_{H\gamma\gamma}^2}{\Gamma_H}$$

C. Calancha @ LCWS13, LC-REP-2013-006

see poster by J.Strube @ ICHEP 2014

Top-Yukawa coupling

Iargest Yukawa coupling.

*cross section significantly enhanced from QCD bound state effect at round threshold.

- *counting experiment, $\sigma_{ttH} \propto g^2_{Htt}$ direct measurement of g_{Htt} .
- multi-jets final states, detector benchmark analyses.

$\Delta g_{ttH}/g_{ttH}$	500 GeV	+ 1 TeV
Baseline	14%	3.2%
LumiUP	7.8%	2%

R. Yonamine, et. al, Phys.Rev. D84 (2011) 014033 T. Tanabe, T. Price, et. al, LC-REP-2013-004 P. Roloff, J. Strube, arXiv: 1307.6744

*force that makes vacuum condense.

- *Δσ/σ of double Higgs production measured well.
- *significant irreducible diagrams effect (interference), $\Delta g/g = F \cdot \Delta \sigma/\sigma$, F>0.5
- new weighting method.
- *challenging analysis, key is flavor tagging, jet-clustering, etc.

$\Delta \lambda_{HHH} / \lambda_{HHH}$	500 GeV	+ 1 TeV
Baseline	83%	21%
LumiUP	46%	13%

C.Duerig @ AWLC14 M. Kurata @ AWLC14 J. Tian, LC-REP-2013-003

14

Summary of observables @ ILC

B	aseline 500 G	GeV: 250 ft GeV: 500 ft eV: 1000 ft	p-1 m p-1 P(e-,e+) p-1 P(e-,e+) p-1 P(e-,e+)	hH = 125 GeV +)=(-0.8,+0.3) @ +)=(-0.8,+0.2) @	250, 500 GeV 1 TeV	ILD & S	SiD: DBD
	ECM		@ 250	GeV	@ 500) GeV	@ 1 TeV
	luminosity · fl	b	25	50	5(00	1000
• • • • • • •	polarization (e-,	e+)	(-0.8,	+0.3)	(-0.8,	+0.3)	(-0.8, +0.2)
	process		ZH	vvH(fusion)	ZH	vvH(fusion)	vvH(fusion)
	cross section		2.6%	-	3.0%	-	-
			σ·Br	σ·Br	σ·Br	σ·Br	σ·Br
	H>bb		1.2%	10.5%	1.8%	0.66%	0.32%
	H>cc		8.3%		13%	6.2%	3.1%
	H>gg		7%		11%	4.1%	2.3%
	H>WW*		6.4%		9.2%	2.4%	1.6%
	Η>ττ		4.2%		5.4%	9%	3.1%
	H>ZZ*		19%		25%	8.2%	4.1%
	Η>γγ		29-38%		29-38%	20-26%	7-10%
	Η>μμ						31%
	ttH, H>bb				28	3%	6%
	H>Inv. (95% C	.L.)	< 0.9	95%			

being updated by new studies with mH = 125 GeV

From observables to couplings — Global Fit

 $\chi^2 = \sum_{i=1}^{33} \left(\frac{Y_i - Y_i'}{\Delta Y_i} \right)$

K.Fujii @ Pheno2014, Pittsburg ILC Higgs White Paper arXiv: 1310.0763

$$\begin{split} Y'_{i} &= F_{i} \cdot \frac{g_{HA_{i}A_{i}}^{2} \cdot g_{HB_{i}B_{i}}^{2}}{\Gamma_{0}} & (A_{i} = Z, W, t) \\ & \vdots & (I = 1, \cdots, 33) \\ & \vdots & (i = 1, \cdots, 33) \\ & F_{i} = S_{i} \cdot G_{i} \cdot \cdots \cdot G_{i} = \left(\frac{\Gamma_{i}}{g_{i}^{2}}\right) \\ & \ddots & S_{i} = \left(\frac{\sigma_{ZH}}{g_{HZZ}^{2}}\right), \left(\frac{\sigma_{\nu\bar{\nu}H}}{g_{HWW}^{2}}\right), \text{ or } \left(\frac{\sigma_{t\bar{t}H}}{g_{Htt}^{2}}\right) \end{split}$$

- It is the recoil mass measurement that is the key to unlock the door to this completely model-independent analysis!
- Cross section calculations (S_i) do not involve QCD ISR.
- Partial width calculations (G_i) do not need quark mass as input.

Systematic Errors

	Baseline	LumUp
luminosity	0.1%	0.05%
polarization	0.1%	0.05%
b-tag efficiency	0.3%	0.15%

16

theoretical calculations of Higgs particle widths are now at O(1%), and are expected to achieve per-mille level in next decade! (M.Peskin, et. al, arXiv:1404.0319)

model independent global fit

coupling	Baseline			LumiUP		
$\Delta g/g$	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV
HZZ	1.3%	1%	1%	0.61%	0.51%	0.51%
HWW	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%
Hbb	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%
Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1%
Hgg	6.4%	2.3%	1.6%	3%	1.2%	0.87%
Ηττ	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%
Ηγγ	18%	8.4%	4%	8.2%	4.5%	2.4%
Ημμ	-	-	16%	-	-	10%
Htt		14%	3.1%	-	7.8%	1.9%
Γ	11%	5%	4.6%	5.4%	2.5%	2.3%
Br(Inv)	<0.95%	<0.95%	<0.95%	0.44%	0.44%	0.44%
HHH	-	83%	21%	-	46%	13%

model independent global fit

coupling		Baseline	line LumiUP			
$\Delta g/g$	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV
HZZ	1.3%	1%	1%	0.61%	0.51%	0.51%
HWW	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%
Hbb	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%
Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1%
Hgg	6.4%	2.3%	1.6%	3%	1.2%	0.87%
Ηττ	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%
Ηγγ	18%	8.4%	4%	8.2%	4.5%	2.4%
Ημμ	-	-	16%	- 100 - 100	-	10%
Htt	_	14%	3.1%	-	7.8%	1.9%
Γ	11%	5%	4.6%	5.4%	2.5%	2.3%
Br(Inv)	<0.95%	<0.95%	<0.95%	0.44%	0.44%	0.44%
HHH	- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199	83%	21%	-	46%	13%

model independent global fit

coupling		Baseline			LumiUP	
$\Delta g/g$	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV
HZZ	1.3%	1%	1%	0.61%	0.51%	0.51%
HWW	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%
Hbb	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%
Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1%
Hgg	6.4%	2.3%	1.6%	3%	1.2%	0.87%
Ηττ	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%
Ηγγ	18%	8.4%	4%	8.2%	4.5%	2.4%
Ημμ		-	16%		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	10%
Htt	_	14%	3.1%	-	7.8%	1.9%
Г	11%	5%	4.6%	5.4%	2.5%	2.3%
Br(Inv)	<0.95%	<0.95%	<0.95%	0.44%	0.44%	0.44%
HHH		83%	21%	-	46%	13%

model independent global fit

coupling	Baseline			LumiUP		
$\Delta g/g$	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV
HZZ	1.3%	1%	1%	0.61%	0.51%	0.51%
HWW	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%
Hbb	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%
Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1%
Hgg	6.4%	2.3%	1.6%	3%	1.2%	0.87%
Ηττ	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%
Ηγγ	18%	8.4%	4%	8.2%	4.5%	2.4%
Ημμ		- 1	16%		-	10%
Htt	_	14%	3.1%	-	7.8%	1.9%
Г	11%	5%	4.6%	5.4%	2.5%	2.3%
Br(Inv)	<0.95%	<0.95%	<0.95%	0.44%	0.44%	0.44%
HHH	-	83%	21%	-	46%	13%

Summary

- * ILC is the ideal machine to measure all Higgs boson couplings precisely and model independently, eventually to reveal the nature of EWSB and mass generation; performance of detectors ILD & SiD can meet the physics goal.
- Recoil mass measurement @ 250 GeV gives the absolute HZZ coupling, be able to model independently normalize all the Higgs couplings and total width; HWW coupling determination is crucial for precisions of all other couplings, and is essential to be improved significantly at higher ECM.
- ★ It is essential to go to 500 GeV to directly measure top-Yukawa coupling and Higgs self-coupling which can be further improved at 1 TeV.
- * Complementary to LHC, ability of energy scan and beam polarization can make ILC run at optimal energy and study in detail what LHC would discover.

18

backup

LHC and ILC comparison / synergy

M.Peskin, arXiv:1312.4974

Fingerprinting non-minimal Higgs sector

S.Kanemura, K.Yagyu, et al., arXiv: 1406.3294

Higgs Quantum Numbers JCP

in addition to the spin study by H-->ZZ* and WW*, ILC offers an orthogonal way and be able to measure the mixture of CP

W.Lohmann, et al., arXiv: hep-ph/0302113

a more complete CP search program

$$A(X_{J=0} \to VV) = v^{-1} \left(a_1 m_V^2 \epsilon_1^* \epsilon_2^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

if a mixture of CP even and CP odd

--> few % of mixing angle M. Schumacher, LC Note LC-PHSM-2001-003

$$A(X_{J=0} \to f\bar{f}) = \frac{m_f}{v} \bar{u}_2 (b_1 + ib_2\gamma_5) u_1$$

- via production channels e⁺e⁻ -> ZH and e⁺e⁻H (ZZ-fusion): probe anomalous HZZ coupling.
- via decay H—>WW*: probe anomalous HWW coupling.
- via decay H—>τ+τ-: probe CP mixture for down-type coupling
- via production e⁺e⁻ —> ttH: probe CP mixture up-type coupling.

(Snowmass Higgs Working Group Report, arXiv: 1310.8361)

limiting factors of coupling precisions

$$Y_{1} = \sigma_{ZH} \propto g_{HZZ}^{2}$$

$$Y_{2} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to b\bar{b}) \propto \frac{g_{HWW}^{2}g_{Hbb}^{2}}{\Gamma_{H}}$$

$$Y_{3} = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) \propto \frac{g_{HZZ}^{2}g_{Hbb}^{2}}{\Gamma_{H}}$$

$$Y_{4} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to WW^{*}) \propto \frac{g_{HWW}^{4}}{\Gamma_{H}}$$

$$\sim \frac{1}{2}\Delta Y_{1}$$

$$\sim \frac{1}{2}\Delta Y_{1} \oplus \frac{1}{2}\Delta Y_{2} \oplus \frac{1}{2}\Delta Y_{3}$$

$$\sim \frac{1}{2}\Delta Y_{1} \oplus \Delta Y_{2} \oplus \frac{1}{2}\Delta Y_{3} \oplus \frac{1}{2}\Delta Y_{4}$$
both ZH and vertices matrix

 $\Delta \Gamma_H \sim 2\Delta Y_1 \oplus 2\Delta Y_2 \oplus 2\Delta Y_3 \oplus \Delta Y_4$

 Δg_{HZZ}

 Δg_{HWW}

 Δg_{Hbb} (

νH tter!

ILC 500 GeV

recoil against Z-->II,qq at 500 GeV

S. Watanuki, T. Suehara, A. Miyamoto, arXiv: 1311.2248

study ongoing, preliminary

- performance using Z-->ll depends on
 momentum resolution, which is usually worse
 at higher energy, but partly compensated by
 higher luminosity
- recoil technique can be also applied to Z-->qq mode, more boosted at higher energy, better separation between Z and H decay products

$\Delta g_{HZZ}/g_{HZZ}$	250 GeV	+ 500 GeV	
Baseline	1.3%	1%	
LumiUP	0.61%	0.51%	

recoil against Z-->qq at 250 GeV study ongoing, preliminary

Cut efficiency (ex. 4-jet, 0-lepton) Cont.

mode	before	after	difference from mean	$\epsilon_{\rm n}^i imes \frac{\Delta \epsilon_n^i}{\epsilon^i}$	$\mathrm{BR}_{\mathrm{n}} imes \epsilon_{\mathrm{n}}^{i} imes rac{\Delta \epsilon_{n}^{i}}{\epsilon^{i}}$
H->all (100%)	216,195 (41.2%)	53.0%			
H->bb (55.6%)	128,085 (44.0%)	51.1%	-1.9%	-1.6%	-0.9%
H->WW (I) (2.4%)	1,331 (10.7%)	58.2%	+5.2%	+1.0%	0.0%
H->WW (sl) (10.0%)	13,588 (25.8%)	61.0%	+8.0%	+3.9%	+0.4%
H->WW (h) (10.5%)	16,471 (29.9%)	41.3%	-11.7%	-6.6%	-0.7%
H->gg (9.0%)	24,154 (51.0%)	52.8%	-0.2%	-0.2%	0.0%
H->ττ (6.7%)	18,354 (52.3%)	69.6%	+16.6%	+16.4%	+1.1%
H->ZZ (3.0%)	5,696 (36.4%)	54.0%	+1.0%	+0.7%	0.0%
H->cc (2.6%)	7,503 (54.2%)	54.0%	+1.0%	+1.0%	0.0%
H-> <i>r r</i> (0.4%)	1,135 (56.9%)	54.8%	+1.8%	+1.9%	0.0%

cut efficiencies are almost the same except for tau and W. Americas Workshop on Linear Colliders 14/05/2014 : Tatsuhiko Tomita

14

T.Tomita @ AWLC14

model dependent fit (7 parameters @ LHC)

$$\chi^{2} = \sum_{i=1}^{i=33} \left(\frac{Y_{i} - Y_{i}'}{\Delta Y_{i}}\right)^{2} + \left(\frac{\xi_{ct}}{\Delta \xi_{ct}}\right)^{2} + \left(\frac{\xi_{\mu\tau}}{\Delta \xi_{\mu\tau}}\right)^{2} + \left(\frac{\xi_{\Gamma}}{\Delta \xi_{\Gamma}}\right)^{2}$$
$$\xi_{ct} = \kappa_{c} - \kappa_{t} \qquad \xi_{\mu\tau} = \kappa_{\mu} - \kappa_{\tau}$$
$$\xi_{\Gamma} = \kappa_{H} - \sum_{i} \kappa_{i}^{2} \operatorname{Br}_{i}|_{\mathrm{SM}}$$
$$\Delta \xi_{ct} = \Delta \xi_{\mu\tau} = 0.5\% \qquad \Delta \xi_{\Gamma} = 0.5\% \times 0.63$$

theory error (loop, parameter)

$$\Delta_{\text{Theory}} = 0 \; ; \; 0.1\% \; ; \; 0.5\%$$
$$\Delta Y_i^2 = \Delta Y_i^2(\exp) + (\Delta_{\text{Theory}} Y_i')^2$$

systematic error

	Baseline	LumiUP
luminosity	0.1%	0.05%
polarisation	0.1%	0.05%
b-tag efficiency *	0.3%	0.15%

global fit --model dependent + sys + theory error (0.1%)

coupling	baseline			luminosity upgrade		
$\Delta g/g$	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV
HZZ	0.74%	0.49%	0.45%	0.36%	0.27%	0.25%
HWW	4.7%	0.43%	0.27%	2.2%	0.27%	0.2%
Hbb	4.7%	0.97%	0.57%	2.2%	0.55%	0.36%
Hcc	6.4%	2.5%	1.3%	3%	1.3%	0.78%
Hgg	6.1%	2%	1.1%	2.8%	1.1%	0.69%
Ηττ	5.2%	1.9%	1.3%	2.4%	1%	0.74%
Ηγγ	17%	8.3%	3.8%	8.1%	4.4%	2.3%
Ημμ	5.2%	1.9%	1.4%	2.4%	1%	0.89%
Htt	6.4%	2.5%	1.3%	3%	1.4%	0.87%
Γ	9%	1.7%	1.1%	4.2%	1%	0.8%
Br(Inv)	<0.95%	<0.95%	<0.95%	0.44%	0.44%	0.44%
HHH	-	83%	21%	-	46%	13%

top-Yukawa coupling

Y. Sudo

ILC 500 GeV & 1 TeV

Higgs Self-coupling Projections @ ILC

see more details in poster by J.Strube

full simulation done w/ mH = 120 GeV, being updated to mH = 125 GeV

$\Delta \lambda_{HHH} / \lambda_{HHH}$	500 GeV			500 GeV + 1 TeV		
Scenario	Α	В	С	А	В	С
Baseline	104%	83%	66%	26%	21%	17%
LumiUP	58%	46%	37%	16%	13%	10%

Scenario A (done): Scenario B (done): HH-->bbbb, full simulation done adding HH-->bbWW*, full simulation done, ~20% relative improvement

Scenario C (ongoing): color-singlet clustering, matrix element method, kinematic fitting, flavor tagging, expected ~20% relative improvement (conservative)

if positron polarisation 30%(20%) --> 60%(40%), gain relatively 10% improvement

General issue: running of the sensitive factor and expected coupling precision at different Ecm

$$\frac{\Delta\lambda}{\lambda} = \mathbf{F} \cdot \frac{\Delta\sigma}{\sigma}$$

Factor increases quickly as going to higher energy

for ZHH, the expected optimal energy ~ 500 GeV (though cross section is maximum ~ 600 GeV)

for vvHH, expected precision improves slowly as going to higher energy

expected coupling precision with more realistic setup

new weighting method to enhance the coupling sensitivity

$$\frac{d\sigma}{dx} = B(x) + \lambda I(x) + \lambda^2 S(x)$$
irreducible interference self-coupling
bservable: weighted cross-section
$$\sigma_w = \int \frac{d\sigma}{dx} w(x) dx$$

equation of the optimal w(x) (variance principle):

./

$$\sigma(x)w_0(x)\int (I(x) + 2S(x))w_0(x)dx = (I(x) + 2S(x))\int \sigma(x)w_0^2(x)dx$$

general solution:

$$w_0(x) = c \cdot \frac{I(x) + 2S(x)}{\sigma(x)}$$

c: arbitrary normalization factor

prospect of Higgs self-coupling

- the mis-clustering of particles degrades the mass resolution very much
- it is studied using perfect color-singlet jet-clustering can improve $\delta\lambda/\lambda$ by 40%
- Mini-jet based clustering (Durham works when Np in mini-jet ~ 5, need better algorithm to combine the mini-jets, using such as color-singlet dynamics)
- looks very challenging now...
- including H-->WW* (ongoing)
- kinematic fitting, matrix element method

$$e^+ + e^- \rightarrow e^+ e^- H \rightarrow e^+ e^- b\bar{b}$$

(ZZ-fusion)

