LCTPC group

2017 26. Jan. Thursday 1

Weekly Report

Content: Transmission with correction(Temperature and Pressure)

Aiko SHOJI Iwate University

Measurement position of each environmental data

$\downarrow \downarrow$ part of e-mail from Oliver-san

Atmospheric pressure

• in the gas rack in the neighboring area T24; this sensor is not well calibrated.

System pressure

- in measurement hose that goes from the TPC to the gas rack.
- For the physical processes in the chamber, the system pressure is relevant.

Temperature

- in metal hoses to the gas inlet and outlet of the TPC.
- basically monitor the room temperature.

H2O and O2

- when the gas flows back from the TPC to the gas rack, first the water content is measured and afterwards the oxygen content.
- The electron transmission rate I reported at the last week's meeting has been corrected using pressure sensor data that is not well calibrated(Atmospheric pressure).
- So, I corrected the transmission rate using calibrated sensor data(System pressure).

Correction method

• I added the following sentences to Charge.C (macro which outputs charge(y) for each drift distance) and got the corrected charge value.

#ifdef GAIN_CORRECTION
 double corr = rinfo.GetGainCorrection(run);
 y /= corr;
 dy /= corr;
#endif

- The correction coefficient(corr) is calculated in Runinfo.h (header file in which information of Run data is written).
- Considering that the gain(charge) depends on P/T (Pressure/Temperature), the correction coefficient is defined by the following equation.

$$corr = \exp\left[A_1\left(\frac{P_0/T_0}{P/T}\right) - 1\right] \cdot \exp\left[A_2\left(\frac{P_0/T_0}{P/T}\right) - 1\right]$$

 A_1 :Gain at upper GEM's voltage = 355 V P_0/T_0 : reference(at Run19972) A_2 :Gain at lower GEM's voltage = 315 V

Transmission rate

w/ Gate-GEM

w/ Field Shaper

(Transmission) =
$$\frac{(ADC \ channel \ at \ w/Gate)}{(ADC \ channel \ at \ w/oGate)}$$
 × 100 [%]
i.e. ADC \ channel \ w/FieldShaper

Result(None Correction)

Charge was similarly plotted in other row.

Result(Correction)

After correction the gain is decreasing overall. Charge was similarly plotted in other row.

Summary

Electron Transmission rate

None Correction	80.8 %±0.00062
Correction	83.4 %±0.00064

The target value of 80% or more is achieved, with or without correction.

Next Step

 I'm simulating Cd(Transverse Diffusion Constant) with GarField ++, but it seems that it will take time until the statistics accumulate (around the beginning of February?) -> finish -> compare Cd of Padres.C

Thank you for your attention.

Correction method

```
double GetGainCorrection(int run)
```

```
double tk = GetTemperature(run);
double hp = GetPressure(run);
```

```
double tk0 = GetTemperature(19972); //reference GateGEM
double hp0 = GetPressure(19972); //reference GateGEM
```

```
static const double A1 = 0.0316 * 355.; // katamuki * UpperGEM Voltage static const double A2 = 0.0263 * 315.; // katamuki * LowerGEM Voltage
```

```
double R1 = exp(A1 * ((hp0 / tk0) / (hp / tk) - 1.));
double R2 = exp(A2 * ((hp0 / tk0) / (hp / tk) - 1.));
```

```
return R1 * R2;
```

```
}
```

ł

```
#ifdef GAIN_CORRECTION
    double corr = rinfo.GetGainCorrection(run);
    y /= corr;
    dy /= corr;
#endif
```

Correction method

$$G = \alpha e^{\beta V}$$

$$G_0 = \alpha e^{\beta V_0}$$

$$\frac{G}{G_0} = \frac{\alpha e^{\beta V}}{\alpha e^{\beta V_0}} = e^{\beta (V - V_0)}$$

$$\log \frac{G}{G_0} = \beta (V - V_0)$$

$$= \beta V_0 \left(\frac{V'}{V'_0} - 1\right)$$

$$V: P/_{T} = V': P_{0}/_{T_{0}}$$