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Many people interested in experimental elementary particle
physics are interested in many different problems, including
flavor, neutrinos, CP violation, proton decay, and grand
unification, and aspects of inflationary cosmology.

With my apologies, | am only interested in one problem --

the study of new particles and forces in the energy range
100 GeV - 1 TeV.

| am convinced that these new particles exist. If this is so,
we will begin to discover them in the next few years.

And, if this is so, this study will define elementary particle
physics for the next 20 years.



In these lectures, | would like to discuss three chapters in this
study:

1. LHC: How will we discover the existence of new particles
in the hundred-GeV mass range ?

2. ILC: How will we study the interactions of these particles
in detail, and what will we learn by doing this ?

3. Beyond ILC: How will we pursue the study of these
particles to higher energies ?



The presence of new physics in the hundred-GeV mass range is
motivated by two pressing problems:

electroweak symmetry breaking and cosmic dark matter

| will review the first of these today, the second tomorrow.



The problem of electroweak symmetry breaking is
particularly compelling.

We know that the weak and electromagnetic
interactions are based on an SU(2) x U(1) Yang-Mills
gauge theory.

This theory prohibits masses for the quarks, leptons,
W and Z bosons unless the symmetry is spontaneously
broken.

There is a simple theory of this spontaneously
symmetry breaking based on the minimal Higgs boson.
But this theory is inadequate. It is not a physics
explanation.

Let me review the pieces of this story.



First, the SU(2) x U(1) structure of the weak interactions is well
established experimentally. This structure is built on three key
observations:

1. Universality: all QED,/W, Z couplings arise from the
two constants ¢, g

2. Chirality: left- and right-handed fermions have different
weak couplings

3. non-Abelian gauge struture: The couplings of vector
particles are of the form predicted by Yang and Mills.

All of these features received new confirmation by the LEP and
SLC experiments.



Universality:

In the context of the precision Z experiments, this is the
statement that the coupling of each species of quark and lepton

is given by g ,

a(l o SwQ)
with only two parameters ¢, 8%0 . These parameters can be
extracted from o, G, mz, e.g.,

4 2
sin? 26,, = ma(myz)

B \/iGFmZZ

These points are tested by the measurements of the Z partial
widths.




The partial width of the Z into a fermion species f should be

given by: _ amy
D(Z— ff)= 652 c2, S

times the factor 3(1 4+ as/m) = 3.11 for quarks.

This gives the following table of partial widths and branching

tios: —
ratios species I'(Z — ff) BR
Ve, Uy, Vr 167 MeV 6.7%

e, [, T 84 MeV  3.4%
U, C 300 MeV  12.0%
d,s,b 383 MeV  15.3%

Including a small correction for the case of I'(Z — bg), we

find a total width
e A TR Iz =250 GeV



To test these predictions, we first measure e+e- annihilation at
the Z resonance and measure the relative branching ratios to
hadrons and to visible leptons.

Then we must determine the total width.

The shape of the resonance is distorted by initial-state photon
radiation. Thus, it is necessary to measure the detailed shape of
the resonance to extract 1 7.

It is amusing to note that all three of the Standard Model
interactions - QED, QCD, and of course SU(2) x U(1) contribute
to the Z line-shape.

The resultis: I'z = 2.4952 4+ .0023 MeV
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There is a special consideration for the b quark. The diagrams

— b b b
b W \ ¢ /
+
t W
L L
contribute a correction to the by, Z charge,
I 15, a  m;
= —|\— — —8 —
This is a -2% correction to the partial width. It is easier to
measure the quantity . [(Z — bg)
- I'(Z — hadrons)

which, if universality is correct, is almost independent of sfu.
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The final result is:
Ry = 0.21643 4+ 0.00073

in excellent agreement with the Standard Model and
confirming the -2% shift due to the t-W diagrams.




Chirality:

It is clear from phenomenology of parity violation in beta decay
that the weak interactions couple differently to left- and right-
handed fermions.

In the context of a gauge theory, this tells us directly that the
left and right species have different gauge quantum numbers.

There is a new test of this in the Z decays, the measurement of
final-state helicity in Z° — ff . This is given by

A, _ 9L~ 9%
J — 72 2
97, T 9%

A has quite different values for different species:

15% for leptons , 94% for down-type quarks
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From this and other measurements of final-state lepton
polarization, we obtained:

Ay = 0.1465 £ 0.0033

It was also possible at SLAC to polarize the electrons and
measure A. directly as an asymmetry in the total cross section
on the Z resonances. This gave:

A, = 0.1513 £+ 0.0021
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Yang-Mills structure:

This is tested by the LEP measurements of g(eTe™ — W+W_).
This reaction has a long-recognized danger of violation of unitarity.

F\’\/ 1 % *
iy ~ vyHu ~ (ky —k_) €, - €
N

W has 3 polarization states. In the rest frame €~ = (0,7)"

1
— —(0,1,4,0
but for a W in motion R \@( - 1,4,0)
p' = (Ew,0,0, k) er = %m,l,_i,m
€0 = —— (kw, 0.0, Bw) ~ p" /mu
mw
E%V +k%v S

Notice that €, €, = ~
+0 " €0 2 2
miy, 2miy,
This is trouble; unitarity requires [iM(eTe™ — W W™)| < const
in each partial wave.



However, in a spontaneously broken gauge theory, the 0 polarization
state of the W comes from eating a Goldstone boson. It turns out
that the predicted cross section is just that for producing the

Goldstone bosons. o S -
iM(ezeE — WO_I_WO_) = E{ X

1
{E—FQ}U’YMU (/{+—k )

The SU(2) x U(1) model gives this result by a delicate cancellation

among the diagrams ~ ~_ -
Y .

This cancellation takes place only if the form of the 3-boson vertex
is exactly that given by Yang-Mills theory.
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Thus, the evidence that the weak and electromagnetic
interactions are a

spontaneously broken gauge theory of SU(2) x U(1)
is impressively strong.
This brings up an obvious question:

What is the explanation for the breaking of SU(2) x U(1) ?



In the minimal form of the Standard Model, we explain this
spontaneous symmetry breaking by postulating the existence of
an SU(2)-doublet scalar field ¢ with the potential

V = p1®|¢? + Alg|*
f 42 < 0, the minimum of the potential does not respect
SU(2) x U(1) v

So, why is ,u2 < 0? No answer ! \ /

(1% receives additive corrections from ¢

higher-order corrections

. Bui Q <:>
2 2 2 _ OYty
= | A
a Hbare 72 872

So ,u2 < 0 is not a simple criterion in the underlying theory.




What does an explanatory theory of SU(2) x U(1) breaking look
like ?

The theory must include an SU(2) doublet that obtains a
vacuum expectation value. This field can be either composite
or (effectively) elementary at the 100 GeV scale.

If the doublet of fields is composite, the theory should include
their excited states. It is very difficult for these not to upset
the precision electroweak results. So | will assume that there
is an elementary Higgs field ¢ .

The theory should generate the potential for @ from physics.
That is,

1. 1* should not receive additive, divergent corrections.
2. A calculation should give ;* < 0



It is very difficult to prohibit additive corrections to the mass
term of a scalar field. However, there are three known ways to
forbid this term by symmetry:

0 = € ® is a Goldstone boson
0p =€-A @ is part of a higher-dimensional gauge field
0p =€-1 ¢ is part of a supersymmetry multiplet

In each case, there is a natural mechanism to generate a

potential w1th ,u < 0, if the top quark Yukawa coupling is
the largest relevant couplmg in the model.



In Little Higgs models, the loop corrections due t, T
to the top quark and its partner cancel with a
negative residue.

Katz-Nelson t

In extra-dimensional models, the Kaluza-Klein

excitations of the top quark give a symmetry-
breaking potential for A° VN
T

Hosotani K

In supersymmetry, the renormalization by the H
top quark Yukawa coupling gives a negative Q

~

correction. t

Ibanez-Ross-Alvarez-Gaume-Polchinski-Wise

In all cases, we need a complex model, with new
particles that are partners of the top quark.



| do not ask you to literally accept these models, but | do ask you
to accept the principle that a model of electroweak symmetry
breaking must have multiple components and interacting parts.

These cannot belong to the Standard Model. They are new
particles associated with the hundred-GeV mass scale of the
Higgs potential.

By this logic, the new particles must be there.

If some are partners of the top quark, they must have QCD
interactions. Can we find them ?
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arrival of a superconducting muon toroid at CERN

Paula Collins, CERN
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As | will discuss in a moment, the LHC brings with it an
exceptionally difficult environment in which to search for new
physics. But this does not mean that new physics must be hard
to find. There are two scenarios that are quite likely in which
the discovery is straightforward.

new vector bosons decaying to p ™~
new stable heavy leptons
However, if you will excuse me, | will concentrate in this

lecture on the more generic hypothesis of new heavy particles
with QCD color. | will return to these models in lecture 3.



One feature that | would like to keep in this discussion is the
possibility of producing invisible particles that carry away
missing energy and momentum. | will argue tomorrow that the
fundamental particle of cosmic dark matter is likely to be in
the hundred-GeV mass range. This would be a final decay
product of new particles produced at the LHC.

For new particles with QCD color, the expected cross sections
are at the 10 pb level, corresponding to 10° events/yr at the
luminosities expected for early LHC running.
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The new physics events should be quite complex. A typical
event would have the form shown. Particle labels are for
supersymmetry, but this type of event can appear in all three
scenarios discussed earlier.

Vv
N, q "
a U
1 N; - A
_ [¢]
Vad :
g E\“

It is expected that events of this kind will appear as a very
significant signal above background.

Here are the estimates of Tovey (2003) for supersymmetry
models with universal scalar and gaugino masses at the GUT
scale.
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However, the expectation of large signals above Standard Model
background does not mean that we can be complacent.

The theoretical background levels must be understood very well
both absolutely and in relation to the actual data.



Gianotti and Mangano (2005):

LHC Point 3
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“Not only is the rate larger than previously expected, but the
shape of the distribution is different, and much closer to that of
the signal itself.”



An enormous amount of work has been done on the theoretical
calculation of these background rates.

But still all particle physicists - even string theorists - should be
engaged with this problem. We need clearer ways to think
about the prediction of backgrounds, and to verify our models
of them from data.



In order to reach the level of new physics signals, we will need
to work down through a series of levels dominated by Standard
Model processes of different types.

Here is an idea of the hierarchy:

O tot 100 mb
jets w. pr > 100 1 ub
Drell-Yan 100 nb
tt 800 pb

SUSY (M <1 TeV) 1-10 pb



The first challenge comes with the realization that the processes
that we are looking for occur at rates of order

10—11
of the total pp cross section.

Still, the interesting events have several jets with large values
of pT. To find jets, we can look at the ‘lego plot’ of pT
deposited in the plane of § and ¢ - or, better, rapidity ¥ and
® . If we look for these objects instead of simply searching for

large energy deposition, we already win about 6 orders of
magnitude.
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lego plot of DO event
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To go further, we need to search for events that do not
belong to the classes generated by QCD. These should
be events with multiple jets, plus leptons or unbalanced
visible momentum.

QCD will generate unbalanced momentum if jets are
mismeasured. To control this effect, it is necessary to
understand the detectors, to eliminate noise and
electronic signals unrelated to the physics events, and to
correct for cracks and geometric inefficiencies.



events / 10 GeV

CMS and ATLAS claim that they can control these effects to
the required level. That story is expressed in these figures

from the ATLAS TDR.
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In the physics studies of ATLAS and CMS, the dominant
backgrounds to new physics come from a different source,
heavy particle production within the Standard Model,
production of W, Z. tt plus jets.

These reactions already offer missing energy, leptons, and
hadronic activity. They populate the region of large HT
associated with new physics to the extent the additional jets
are radiated along with the heavy particles.



This is genuinely scary. Processes such as

'

have cross sections comparable to the SUSY signal and might
compete with it.
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Here is a recent quantitative evaluation by Sanjay Padhi, using
ALPGEN and the ATLAS full simulation code
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To understand heavy particle + multijet backgrounds to new
physics, there is a methodology that has been used successfully
in the Tevatron, especially in the CDF and DO analyses of top
quark production.

Use the fact that new particles appear in events with large
numbers of jets and large
Hr = Z Eri
i

Compute systematically the SM rates for n jet production. The
results for fewer jets can be validated against data, both in a
general setting and also with the experimental cuts that define
the new physics search. Now extrapolate to large numbers of
jets and large H .



This method is a now a standard part of the Tevatron
culture.

It apparently originated in UA2, where the systematics of
jet counting was called “Berends scaling”. The name did
not stick, and there are are earlier references.

| think that the concept--in its original context, and in
greater generality--is very important for carrying out and
evaluating experimental results from the LHC. | would
like to present a new name for it: the staircase.

Here is - to my knoweldge - the original staircase
presented by Ellis, Kleiss, and Stirling:
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Let me show you a series of recent figures from the
Tevatron experiments that illustrate this concept.



systematics of W + jets

do/dE [pb/GeV]

N

1072
107

10"

CDF Run I Prellmlnary

—f— LO Alpgen + PYTHIA

* CDF Data jdL = 320 pb’
W kin: ES>20[GeV]; m°l<1.1
MY > 20[GeV/c’]; E > 30[GeV]

Jets: JetClu R=0.4; nl<2.0
hadron level; no UE correction

Total c normalized to Data

|
0

50

100

150

200 250 300 350
Jet Transverse Energy [GeV]




search for SUSY in acoplanar di-jet events
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top quark: require 1 b tagged jet
Here there are staircases both with respect to the
number of jets,
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and with respect to the number of b-tagged jets.

DO Run Il Preliminary
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Using these and 10 more variables input to a neural network
classfier, CDF has demonstrated the ability to observe tt events
without b-tagging. Here are the last two steps in the staircase in
that analysis.
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The CDF and DO experiments reached an important milestone
this past year with the observation of single top production.

This process has a rate about 10% of the rate for top quark pair

production. It is actually two distinct processes, one with an
s-channel pole, one with a t-channel pole:

t b
W

N b W

The signature of single-top production is intermediate
between those of W + jets and top quark pair production.



The analyses are based on
(+ Er +(2,3) jet
events with 1 b-tag.

To extract the single-top events from within these backgrounds,
the CDF and DO events use automatic classifiers.

One method is to assigh a weight to each event based on the
lowest order matrix elements for the signal and background
processes:

D(x) - - P(x|signal)

(x|signal) + P(x|background)

Other analyses use neural networks or boosted decision trees
trained with Monte Carlo signal and background state.

| will show some figures from the matrix element based analyses.
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then to the possible  2-jet events

signal events:
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We can also move in the direction of multilepton sighatures.
Here there is another staircase, the Baer-Tata staircase.

Many new physics models such as supersymmetry predict
2, 3, 4 - lepton events in a steadily decreasing progression.

The Standard Model also
produces such events, from
multiple heavy-quark decays
and jets faking leptons.

Fortunately, these come from
the same W, Z, tt + jets
processes that we have
already been discussing.

Electroweak backgrounds, e.g. pp — WTW™T — (70~ + jets
are at the fb level.



signal cross sections from one of the models
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These studies at the Tevatron give us confidence that we will
be able to sort new physics events with heavy particles from

the background due to Standard Model heavy particle
production.

There is one genuinely new issue at the LHC. At the Tevatron,
top quark pair production is at the pb level -- though already it
is an important background in new physics searches. At the
LHC, top quark pair production is at the nb level!

We need a way to obtain a relatively pure sample of

tt -+ jets events to validate the theoretical models of this
process used to estimate these backgrounds.



For example, in Padhi’s simulation of the single-lepton + MET

signature:
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Once we have convincingly established that new particles are
produced at the LHC, it is another challenge to work out the
properties of these particles and measure their masses and
couplings.

This could fill another lecture, one that | will not have time for
here. This is Prof. Nojiri’s subject, so | hope you can learn about
it at another time.

In short, there are methods to find the masses of new particles
at the 10% level, and some qualitative indications of spin and
chirality assignments.



Instead of discussing this, | will rush into the future.

Tomorrow, we will talk about precision new particle
spectroscopy at the ILC.



