Physics at ILC

Keisuke Fujii Hue Univ., July 24, 2014

arXiv: 1306.6352 (TDR Phys.) arXiv: 1310.0763 (Higgs) arXiv: 1307.5248 (BSM) arXiv: 1307.8265 (Top) arXiv: 1307.3962 (EW)

Electroweak Symmetry Breaking Mystery of something in the vacuum

• Success of the SM = success of gauge principle

 W_T and Z_T = gauge fields of the EW gauge symmetry

Gauge symmetry forbids explicit mass terms for W and Z
 → it must be broken by something condensed in the vacuum:

 $\langle 0 | I_3, Y | 0 \rangle \neq 0 \quad \langle 0 | I_3 + Y | 0 \rangle = 0$

• This "something" supplies 3 longitudinal modes of W and Z:

 $W_L^+, W_L^-, Z_L \longleftarrow \chi^+, \chi^-, \chi_3$: Goldstone modes

• Left- (f_L) and right-handed (f_R) matter fermions carry different EW charges. Their explicit mass terms also forbidden by the EW gauge symmetry They must be generated through their Yukawa interactions with some weak-charged vacuum

- In the SM, the same "something" mixes f_L and $f_R \rightarrow$ generating masses and inducing flavor-mixings
- In order to form the Yukawa interaction terms, we need a complex doublet scalar field, which has four real components. The SM identifies three of them with the Goldstone modes.
- We need one more to form a complex doublet, which is the physical Higgs boson.
- This SM symmetry breaking sector is the simplest and the most economical, but there is no reason for it. The symmetry breaking sector might be more complex.
- We don't know whether the "something" is elementary or composite.
- We don't know why and how it condensed in the vacuum.
- We knew it's there in the vacuum with a vev of 246 GeV and a custodial SU(2) (ρ=1). But other than that we didn't know almost anything about the "something" until July 4, 2012.

Since the July 4th, the world has changed!

The discovery of the ~125 GeV boson at LHC could be called a quantum jump.

- X(125) → γγ means X is a neutral boson and J ≠ 1 (Landau-Yang theorem). Recent LHC results strongly suggest J^P=0⁺.
- X(125) \rightarrow ZZ^{*}, WW^{*} \Rightarrow ³ XVV couplings: (V=W/Z: gauge bosons)
- There is, however, no gauge coupling like XVV, only XXVV or XXV
 - \Rightarrow XVV probably from XXVV with one X replaced by $\langle X \rangle \neq 0$, namely $\langle X \rangle$ XVV
 - \Rightarrow There must be <X><X>VV, a mass term for V.
 - \Rightarrow X is at least part of the origin of the masses of V=W/Z. \rightarrow X is a Higgs!
 - ⇒ This is a great step forward but we need to know whether <X> saturates the SM vev = 246GeV. We need to know WHY X condensed in the vacuum.
- $X \rightarrow ZZ^*$ means, X can be produced via $e^+e^- \rightarrow Z^* \rightarrow ZX$.

- By the same token,
 - $X \rightarrow WW^*$ means, X can be produced via W fusion: $e^+e^- \rightarrow vvX$.
- So we now know that the major Higgs production mechanisms in e⁺e⁻ collisions are indeed available at the ILC ⇒ No lose theorem for the ILC.
- ~125GeV is the best place for the ILC, where variety of decay modes are accessible.
- We need to check this ~125GeV boson in detail to see if it has indeed all the required properties of the something in the vacuum.

What Properties to Measure?

The Key is the Mass-Coupling Relation

The Higgs is a window to BSM physics!

Our Mission = Bottom-up Model-Independent Reconstruction of the EWSB Sector

through Precision Higgs Measurements

- Multiplet structure :
 - Additional singlet?
 - Additional doublet?
 - Additional triplet?
- Underlying dynamics :
 - Why did the Higgs condense?
 - Weakly interacting or strongly interacting?
 = elementary or composite ?
- Relations to other questions of HEP :
 - ϕ + S \rightarrow (B-L) gauge, DM, ...
 - $\phi + \phi'$ \rightarrow Type I : m_v from small vev, ... \rightarrow Type II : SUSY, DM, ...
 - → Type X: m_v (rad.seesaw), ...

 $(\Phi + S)$

 $(\Phi + \Phi')$

 $(\Phi + \Delta)$

- $\phi + \Delta \rightarrow m_v$ (Type II seesaw), ...
- $\lambda > \lambda_{SM} \rightarrow EW$ baryogenesis ?
- $\lambda \downarrow 0 \rightarrow$ inflation ?

There are many possibilities!

Different models predict different deviation patterns --> Fingerprinting!

Model	μ	τ	b	С	t	g∨
Singlet mixing	↓	\downarrow	\downarrow	\downarrow	Ļ	Ļ
2HDM-I	↓	\downarrow	\downarrow	\downarrow	Ļ	\downarrow
2HDM-II (SUSY)	↑	↑	↑	\downarrow	Ļ	\downarrow
2HDM-X (Lepton-specific)	↑	\uparrow	\downarrow	\downarrow	\downarrow	Ļ
2HDM-Y (Flipped)	↓	\downarrow	↑	\downarrow	\downarrow	\downarrow

Mixing with singlet

Composite Higgs

$\frac{g_{hVV}}{g_{hym}VV}$	\simeq	$1 - 3\% (1 \text{ TeV}/f)^2$	
ghff ghanff	\simeq	$\left\{ \begin{array}{l} 1-3\%(1~{\rm TeV}/f)^2 \\ 1-9\%(1~{\rm TeV}/f)^2 \end{array} \right.$	(MCHM4) (MCHM5)
SUSY			

$$\frac{g_{hbb}}{g_{hs_M tb}} = \frac{g_{h\tau\tau}}{g_{hs_M \tau\tau}} \simeq 1 + 1.7\% \left(\frac{1 \text{ TeV}}{m_A}\right)$$

Expected deviations are small --> Precision!

For the precision we need a 500GeV ILC

LC 250-500

Why 250-500 GeV?

Three well known thresholds

ZH @ 250 GeV (~Mz+Мн+20GeV) :

- Higgs mass, width, J^{PC}
- Gauge quantum numbers
- Absolute measurement of HZZ coupling (recoil mass) -> couplings to H (other than top)
- BR(h->VV,qq,II,invisible) : V=W/Z(direct), g, y (loop)

ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

- Threshold scan --> theoretically clean mt measurement: $\Delta m_t(\overline{MS}) \simeq 100 \,\text{MeV}$ --> test stability of the SM vacuum
 - --> indirect meas. of top Yukawa coupling
- A_{FB}, Top momentum measurements
- Form factor measurements

 $\gamma\,\gamma \to HH$ @ 350GeV possibility

vvH @ 350 - 500GeV :

HWW coupling -> total width --> absolute normalization of Higgs couplings

ZHH @ 500GeV (~Mz+2MH+170GeV) :

Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling

ttbarH @ 500GeV (~2mt+MH+30GeV) :

- Prod. cross section becomes maximum at around 800GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling

We can complete the mass-coupling plot at ~500GeV!

e⁺ Z H e⁻ Z Z

Main Production Processes

Single Higgs Production

Possible to rediscover the Higgs in one day!

ILC 250

Recoil Mass Measurement: The Key

to unlock the door to fully model-independent determinations of various BRs, Higgs couplings, and total widths

Recoil Mass

Key Point:

 σ_{ZH} is the key to extract BR(h \rightarrow AA) from $\sigma \times$ BR(h \rightarrow AA) and g_{hAA} from BR(h \rightarrow AA) through determination of the total width $\Gamma_h!$ (great advantage of ILC)

K.Fujii Hue, July 24. 2014

High Performance Flavor Tagging : The Key

to directly access major couplings: bb, cc, ττ, gg, WW*

By template fitting, we can separate $H \rightarrow bb$, cc, gg, others!

$$BR = \left(\sigma \times BR\right) / \sigma$$

--> $\Delta\sigma/\sigma$ =2.6% eventually limits the BR measurements.

--> luminosity upgrade and/or longer running in a later stage.

 $m_H = 125 \,\mathrm{GeV}$ scaled from mH=120 GeV @250GeV ZH process Int. Lumi. 250 2.6% $\Delta\sigma/\sigma$ decay mode $\Delta \sigma Br / \sigma Br$ $H \rightarrow bb$ 1.2% 8.3% $H \rightarrow cc$ 7% $H \rightarrow gg$ $H \rightarrow WW^*$ 6.4% 4.2% $H \rightarrow \tau \tau$

 $250 \, {\rm fb}^{-1}$ @250 GeV

Clean environment and a high performance vertex detector are the two powerful weapons of the ILC to directly access all of the major couplings (great advantage of the ILC)

K.Fujii Hue, July 24, 2014

DBD Physics Chap.

Total Width and Coupling Extraction One of the major advantages of the LC

To extract couplings from BRs, we need the total width:

$$g_{HAA}^2 \propto \Gamma(H \to AA) = \Gamma_H \cdot BR(H \to AA)$$

To determine the total width, we need at least one partial width and corresponding BR:

$$\Gamma_H = \Gamma(H \to AA) / BR(H \to AA)$$

In principle, we can use A=Z, or W for which we can measure both the BRs and the couplings:

ILC 500

Width and BR Measurements at 500 GeV Addition of 500GeV data to 250GeV data

ILD DBD Full Simulation Study

Е	independent measurements	relative error
	σ_{ZH}	2.6%
	$\sigma_{ZH} \cdot Br(H \to b\bar{b})$	1.2%
	$\sigma_{ZH} \cdot Br(H \to c\bar{c})$	8.3%
250	$\sigma_{ZH} \cdot Br(H \to gg)$	7%
	$\sigma_{ZH} \cdot Br(H \to WW^*)$	6.4%
	$\sigma_{ZH} \cdot Br(H \to \tau^+ \tau^-)$	4.2%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to b\bar{b})$	10.5%
	σ_{ZH}	3%
	$\sigma_{ZH} \cdot Br(H \to b\bar{b})$	1.8%
	$\sigma_{ZH} \cdot Br(H \to c\bar{c})$	13%
	$\sigma_{ZH} \cdot Br(H \to gg)$	11%
500	$\sigma_{ZH} \cdot Br(H \to WW^*)$	9.2%
500	$\sigma_{ZH} \cdot Br(H \to \tau^+ \tau^-)$	5.4%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to b\bar{b})$	0.66%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to c\bar{c})$	6.2%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to gg)$	4.1%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to WW^*)$	2.4%

 $250 \, {\rm fb}^{-1}$ @250 GeV

 $m_H = 125 \,\mathrm{GeV}$

 $+500 \, {\rm fb}^{-1}$ @500 GeV

comes in as a powerful tool!

 $\Delta\Gamma_H/\Gamma_H \simeq 5\%$

Mode	∆BR/BR			
bb	<mark>2.2</mark> (2.9)%			
СС	<mark>5.1</mark> (8.7)%			
gg	4.0 (7.5)%			
WW*	<mark>3.1</mark> (6.9)%			
ττ	3.7 (4.9)%			

The numbers in the parentheses are as of $~250\,{\rm fb}^{-1}@250\,{\rm GeV}$

Top Yukawa Coupling

The largest among matter fermions, but not yet directly observed

Cross section maximum at around Ecm = 800GeV

Philipp Roloff, LCWS12

Tony Price, LCWS12

DBD Full Simulation

A factor of 2 enhancement from QCD bound-state effects

$$1 \text{ ab}^{-1} @500 \text{ GeV} \qquad m_H = 125 \text{ GeV} \\ \Delta g_Y(t) / g_Y(t) = 9.9\%$$

Tony Price, LCWS12

scaled from mH=120 GeV

Notice $\sigma(500+20GeV)/\sigma(500GeV) \sim 2$ Moving up a little bit helps significantly!

And then Higgs Self-coupling the force that made the Higgs condense in the vacuum

We need to measure the Higgs self-coupling

= We need to measure the shape of the Higgs potential

The measurement is very difficult even at ILC.

The Problem : BG diagrams dilute self-coupling contribution

K.Fujii, Hue, July 24, 2014

DBD full simulation

e⁺ z H · H e⁻ · · · · · H Higgs self-coupling @ 500 GeV

 $e^+ + e^- \rightarrow ZHH$ M(H) = 120 GeV $\int Ldt = 2ab^{-1}$

P(e-,e+)=(-0.8,+0.3)

			background	significance		
Energy (GeV) Modes	signal	(tt, ZZ, ZZH/ ZZZ)	excess	measurement		
$500 \qquad ZHH \to (l\bar{l})(b\bar{b})(b\bar{b})$	3.7	4.3	1.5σ	1.1σ		
	$21111 \rightarrow (ii)(00)(00)$	4.5	6	1.5σ	1.2σ	
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	8.5	7.9	2.5σ	2.1σ	
$500 \qquad ZHH \to (q\bar{q})(b\bar{b})(b\bar{b})$	13.6	30.7	2.2σ	2.0σ		
	$Z \Pi \Pi \rightarrow (qq)(00)(00)$	18.8	90.6	1.9σ	1.8σ	

$$\frac{\delta\sigma}{\sigma} = 27\%$$
$$\frac{\delta\lambda}{\lambda} = 44\%$$

 χ^{2} as a function of cross section

(cf. 80% for qqbbbb at the LoI time)

ILC 1000

DBD full simulation

Higgs self-coupling @ 1 TeV $e^+ + e^- \rightarrow \nu \bar{\nu} HH$ M(H) = 120 GeV $\int Ldt = 2ab^{-1}$ P(e,e+)=(-0.8,+0.2)

	Expecte d	After Cut
vvhh (WW- F)	272	35.7
vvhh (ZHH)	74	3.88
BG (tt/ vvZH)	7.86×10 5	33.7
significance	0.3	4.29

Double Higgs excess significance: $> 7\sigma$

- better sensitivity factor
- benefit more from beam polarization
- BG tt x-section smaller
- more boosted b-jets

Higgs self-coupling significance: $> 5\sigma$

ILD DBD Study (Junping Tian)

HHH Prospects

Scaled to M(H)=125GeV

Scenario A: HH-->bbbb, full simulation done Scenario B: by adding HH-->bbWW*, full simulation ongoing, expect ~20% relative improvement Scenario C: color-singlet clustering, future improvement, expected ~20% relative improvement (conservative)

HHH	500 GeV			500	GeV + 1	TeV
Scenario	Α	В	С	Α	В	С
Baseline	104%	83%	66%	26%	21%	17%
LumiUP	58%	46%	37%	16%	13%	10%
	250 GeV: 250 500 GeV: 500 1 TeV: 1000) fb ⁻¹) fb ⁻¹) fb ⁻¹	250 GeV: 115 500 GeV: 160 1 TeV: 250	0 fb ⁻¹ 0 fb ⁻¹ 0 fb ⁻¹	II D DE	8D Study
	Baseline		LumiUF	0	(Junpir	ng Tian, Masakazu Kurat

Top Yukawa Coupling at 1TeV

Now it is fully open!

ILD / SiD DBD Studies

Tony Price & Tomohiko Tanabe: ILD DBD Study Philipp Roloff & Jan Strube: SiD DBD Dtudy

DBD Full Simulation

Independent Higgs Measurements at ILC250 GeV: 250 fb-1Baseline ILC program

500 GeV: 500 fb⁻¹

1 TeV: 1000 fb⁻¹

 $(M_{\rm H} = 125 \, {\rm GeV})$

Ecm	250 GeV		500 GeV		1 TeV
luminosity [fb	250		500		1000
polarization (e	(-0.8,	+0.3)	(-0.8, +0.3)		(-0.8, +0.2)
process	ZH	vvH(fusion)	ZH	vvH(fusion)	vvH(fusion)
cross section	2.6%	-	3%	-	
	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br
H→bb	1.2%	10.5%	1.8%	0.66%	0.32%
H→cc	8.3%		13%	6.2%	3.1%
H→gg	7%		11%	4.1%	2.3%
H→WW*	6.4%		9.2%	2.4%	1.6%
Η→ττ	4.2%		5.4%	9%	3.1%
H→ZZ*	18%		25%	8.2%	4.1%
Η→γγ	34%		34%	19%	7.4%
Η→μμ	100%	_	_	-	31%

ILC 250+500+1000

Model-independent Global Fit for Couplings

33 σ xBR measurements (Y_i) and σ _{ZH} (Y_{34,35})

$$\chi^2 = \sum_{i=1}^{35} \left(\frac{Y_i - Y_i'}{\Delta Y_i} \right)^2$$

 $Y'_{i} = F_{i} \cdot \frac{g_{HA_{i}A_{i}}^{2} \cdot g_{HB_{i}B_{i}}^{2}}{\Gamma_{0}} \qquad (A_{i} = Z, W, t)$ $(i = 1, \cdots, 33)$ $F_{i} = S_{i} G_{i} \qquad G_{i} = \left(\frac{\Gamma_{i}}{g_{i}^{2}}\right)$ $F_{i} = S_{i} G_{i} \qquad G_{i} = \left(\frac{\sigma_{ZH}}{g_{HZZ}^{2}}\right), \left(\frac{\sigma_{\nu\bar{\nu}H}}{g_{HWW}^{2}}\right), \text{ or } \left(\frac{\sigma_{t\bar{t}H}}{g_{Htt}^{2}}\right)$

- It is the recoil mass measurement that is the key to unlock the door to this completely model-independent analysis!
- Cross section calculations (S_i) do not involve QCD ISR.
- Partial width calculations (G_i) do not need quark mass as input.

We are confident that the total theory errors for S_i and G_i will be at the 0.1% level at the time of ILC running.

Systematic Errors

	Baseline	LumUp
luminosity	0.1%	0.05%
polarization	0.1%	0.05%
b-tag efficiency	0.3%	0.15%

arXiv: 1310.0763

Model-independent Global Fit for Couplings Baseline ILC program

250 GeV: 250 fb⁻¹ 500 GeV: 500 fb⁻¹ 1 TeV: 1000 fb⁻¹

 $(M_{\rm H} = 125 {\rm ~GeV})$

coupling	250 GeV	250 GeV + 500	250 GeV + 500
HZZ	1.3%	1%	1%
HWW	4.8%	1.1%	1.1%
Hbb	5.3%	1.6%	1.3%
Hcc	6.8%	2.8%	1.8%
Hgg	6.4%	2.3%	1.6%
Ηττ	5.7%	2.3%	1.6%
Ηγγ	18%	8.4%	4%
Ημμ	91%	91%	16%
Γ	12%	4.9%	4.5%
Htt	-	14%	3.1%

P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV

P(e-,e+)=(-0.8,+0.2) @ 1 TeV

21%(*)

) With H->WW (preliminary), if we include expected improvements in jet clustering it would become 17%!

83%(*)

HHH

Mass Coupling Relation

After Baseline ILC Program

Model-independent Global Fit for Couplings

Luminosity Upgraded ILC $(M_H = 125 \text{ GeV})$

250 GeV: 250 fb⁻¹ 500 GeV: 500 fb⁻¹ 1 TeV: 1000 fb⁻¹ 250 GeV: 1150 fb⁻¹ 500 GeV: 1600 fb⁻¹ 1 TeV: 2500 fb⁻¹

¹b⁻¹ P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV

eV P(e-,e+)=(-0.8,+0.2) @ 1 TeV

coupling	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV
HZZ	0.6%	0.5%	0.5%
HWW	2.3%	0.6%	0.6%
Hbb	2.5%	0.8%	0.7%
Hcc	3.2%	1.5%	1%
Hgg	3%	1.2%	0.93%
Ηττ	2.7%	1.2%	0.9%
Ηγγ	8.2%	4.5%	2.4%
Ημμ	42%	42%	10%
Γ	5.4%	2.5%	2.3%
Htt	-	7.8%	1.9%

) With H->WW (preliminary), if we include expected improvements in jet clustering, it would become 10%!

Finger Printing 2HDM

Figure 1.17. The deviation in $\kappa_f = \xi_h^f$ in the 2HDM with Type I, II, X and Y Yukawa interactions are plotted as a function of $\tan \beta = v_2/v_1$ and $\kappa_V = \sin(\beta - \alpha)$ with $\cos(\beta - \alpha) \leq 0$. For the illustration purpose only, we slightly shift lines along with $\kappa_x = \kappa_y$. The points and the dashed curves denote changes of $\tan \beta$ by one steps. The scaling factor for the Higgs-gauge-gauge coupling constants is taken to be $\kappa_V^2 = 0.99, 0.95$ and 0.90. For $\kappa_V = 1$, all the scaling factors with SM particles become unity. The current LHC constraints, expected LHC and ILC sensitivities on (left) κ_d and κ_ℓ and (right) κ_u and κ_ℓ are added.

Composite Higgs: Reach

Complementary approaches to probe composite Higgs models

- Direct search for heavy resonances at the LHC
- Indirect search via Higgs couplings at the ILC
 Comparison depends on the coupling strength (g_{*})

Electroweak Baryogenesis

Senaha, Kanemura

LHC + ILC

ILC greatly improves the LHC precisions and provides the necessary precision for the fingerprinting

For rare decays such as $H \rightarrow \gamma \gamma$, there is powerful synergy of LHC and ILC!

arXiv: 1312.4974

M. Peskin, LCWS 2013

At LHC all the measurements are $\sigma \times BR$ measurements.

At ILC all but the σ measurement using recoil mass technique is $\sigma \times BR$ measurements.

EWSB Summary

- The primary goal for the next decades is to uncover the secret of the EW symmetry breaking. This will open up a window to BSM and set the energy scale for the E-frontier machine that will follow LHC and ILC.
- Probably LHC will hit systematic limits at O(2-5%) for most of σ×BR measurements, being not enough to see the BSM effects if we are in the decoupling regime.
 Moreover, we need some model assumption to extract couplings from the LHC data.
- The recoil mass measurement at ILC unlocks the door to a fully model-independent analysis. To achieve the primary goal we hence need a 500 GeV LC for self-contained precision Higgs studies to complete the mass-coupling plot
 - starting from $e^+e^- \rightarrow ZH$ at Ecm = 250GeV,
 - then ttbar at around 350GeV,
 - and then ZHH and ttbarH at 500GeV.
- The ILC to cover up to 500 GeV is an ideal machine to carry out this mission (regardless of BSM scenarios) and we can do this *completely model-independently* with staging starting from 250GeV. We may need more data depending on the size of the deviation. The ILC has a luminosity upgrade potential.
- If we are lucky, some extra Higgs boson or some other new particle might be within reach already at ILC 500. Let's hope that the upgraded LHC will make another great discovery in the next run.
- If not, we will most probably need the energy scale information from the precision Higgs studies. Guided by the energy scale information, we will go hunt direct BSM signals with a new machine, if necessary.
Last but Not Least

- So far, I have been focusing on the case where X(125GeV) alone would be the probe for BSM physics, but there is a good chance for the higher energy run of LHC to bring us more.
- It is also very important to stress that *ILC, too, is an energy frontier machine.* It will access the energy region never explored with any lepton collider. There can be a zoo of new uncolored particles or new phenomena that are difficult to find at LHC but can be discovered and studied in detail at ILC.
- For instance

Natural SUSY

 Naturalness prefers µ not far above 100GeV but colored sparticles can be heavy enough to escape LHC detection

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

- → light chargino/neutralinos will be *higgsino-dominant* and *nearly mass degenerate*
- \rightarrow typically Δm of 20 GeV or less \rightarrow very difficult for LHC!

Higgsinos in Natural SUSY (ΔM<a few GeV)

ILC as a Higgsino Factory

dm1600						
Mas	Mass Spectrum					
Particle Mass (GeV)						
h	124					
$\tilde{\chi}_{1}^{0}$ 164.17						
$\tilde{\chi}_{1}^{\pm}$	165.77					
$\tilde{\chi}_2^0$	166.87					
H's	$\sim 10^3$					
$\tilde{\chi}$'s $\sim 2 - 3 \times 10^3$						
$\Delta M(ilde{\chi}_1^\pm, ilde{\chi}_1^0) = 1.59 \; ext{GeV}$						

dm770					
Mass Spectrum					
Particle Mass (GeV)					
h 127					
$\tilde{\chi}_{1}^{0}$	166.59				
$\tilde{\chi}_1^{\pm}$	167.36				
$\tilde{\chi}_2^0$	167.63				
H's	$\sim 10^3$				
$\tilde{\chi}$'s $\sim 2-3 imes 10^3$					
$\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 0.77 \text{ GeV}$					

Hale Sert ECFA LCWS 2013, DESY EPJC (2013) 73:2660

ISR Tagging

Only very soft particles in the final states \rightarrow Require a hard ISR to kill huge two-photon BG!

500fb-1 @ Ecm=500GeV Pol (e+,e-) = (+0.3,-0.8) and (-0.3,+0.8)

 $\delta(\sigma \times BR) \simeq 3\%$ $\delta M_{\tilde{\chi}_1^{\pm}}(M_{\tilde{\chi}_1^0}) \simeq 2.1(3.7) \,\mathrm{GeV}$ $\delta \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \simeq 70 \,\mathrm{MeV}$

 $\delta(\sigma \times BR) \simeq 1.5\%$ $\delta M_{\tilde{\chi}_1^{\pm}}(M_{\tilde{\chi}_1^0}) \simeq 1.5(1.6) \,\mathrm{GeV}$ $\delta \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \simeq 20 \,\mathrm{MeV}$

Extracting M1 and M2

Gaugino mass relation

- Chargino/Neutralino @ ILC \rightarrow probe M₁-M₂ gaugino mass relation
- Gluino @ LHC → test of gaugino mass relation by ILC-LHC complementarity
- Gives a prediction of the gluino mass scale
- Discrimination of SUSY spontaneous symmetry breaking scenarios

Dark Matter Search

LHC 14 TeV, 3000 fb-1, Jets+MET analysis only pMSSM Neutralino DM expected exclusion

may use mono-jet

Cahill-Rowley, Hewett, Ismail, Rizzo [arXiv:1307.8444]

Loopholes of HL-LHC \rightarrow Hunting ground of ILC

LC:

single photon search

Slepton decays to DM with small mass differences

Study of stau pair production at the ILC

Observation of lighter and heavier stau states with decay to DM + hadronic tau

Benchmark point: m(LSP) = 98 GeV, m(stau1) = 108 GeV, m(stau2) = 195 GeV

Stau1 mass resolution ~0.1% Stau2 mass resolution ~3% LSP mass resolution ~1.7%

 \rightarrow

DM Relic Abundance

WMAP/Planck $\Omega_{\chi}h^2 = 0.1199 \pm 0.0027$

Once a DM candidate is discovered, crucial to test consistency with the measured DM relic abundance.

→ ILC precise measurements of mass and cross sections

Baltz, Battaglia, Peskin, Wizansky PRD74 (2006) 103521, arXiv:hep-ph/0602187

Тор

Open Top Production

Anomalous Couplings in Open Top Production at 500 GeV

Figure 34: Predictions of various groups [40,42–44] on deviations from Standard Model couplings of the t quark within Randall-Sundrum Models. The cartoon is taken from [47].

Coupling	LHC [40]	e^+e^- [52]	e^+e^- [45]
	$L = 300 \text{ fb}^{-1}$	$P_{e^-} = \pm 0.8$	$\mathcal{L} = 500 \text{ fb}^{-1}, P_{e^{+}} = \pm 0.8, \mp 0.3$
$\Delta \tilde{F}_{1V}^{\gamma}$	$^{+0.043}_{-0.041}$	$^{+0.047}_{-0.047}$, $\mathcal{L} = 200 \text{ fb}^{-1}$	$^{+0.002}_{-0.002}$
$\Delta \tilde{F}_{1V}^Z$	$^{+0.24}_{-0.62}$	$^{+0.012}_{-0.012}$, $\mathcal{L} = 200 \text{ fb}^{-1}$	$^{+0.002}_{-0.002}$
$\Delta \tilde{F}_{1A}^Z$	$^{+0.052}_{-0.060}$	$^{+0.013}_{-0.013}$, $\mathcal{L} = 100~{\rm fb}^{-1}$	$^{+0.006}_{-0.006}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$^{+0.038}_{-0.035}$	$^{+0.038}_{-0.038}$, $\mathcal{L}=200~{\rm fb}^{-1}$	$^{+0.001}_{-0.001}$
$\Delta \tilde{F}_{2V}^Z$	$^{+0.27}_{-0.19}$	$\substack{+0.009\\-0.009}$, $\mathcal{L}=200~\mathrm{fb}^{-1}$	$^{+0.002}_{-0.002}$

Coupling	LHC [40]	e^+e^- [51]
	$L = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \text{ fb}^{-1}, P_{e^{-,+}} = -0.8$
$\Delta { m Re} \widetilde{F}^{\gamma}_{2A}$	$^{+0.17}_{-0.17}$	$^{+0.007}_{-0.007}$
$\Delta { m Re} {\widetilde F}^Z_{2A}$	$^{+0.35}_{-0.35}$	$^{+0.008}_{-0.008}$
$\Delta \mathrm{Im} \widetilde{F}^{\gamma}_{2A}$	$^{+0.17}_{-0.17}$	$^{+0.008}_{-0.008}$
$\Delta {\rm Im} \widetilde{F}^Z_{2A}$	$^{+0.035}_{-0.035}$	$^{+0.015}_{-0.015}$

Table 3: Sensitivities achievable at 68.3% CL for the CP-conserving t quark form factors $\tilde{F}_{1V,A}^{X}$ and \tilde{F}_{2V}^{X} defined in (1), at LHC and at the ILC. The assumed luminosity samples and, for ILC, beam polarization, are indicated. In the LHC studies and in the study [52], only one form factor at a time is allowed to deviate from its SM value. In study [45] the form factors are allowed to vary independently.

Table 4: Sensitivities achievable at 68.3% CL for the t quark CP-violating magnetic and electric dipole form factors \tilde{F}_{2A}^{X} defined in (1), at the LHC and at linear e^+e^- colliders as published in the TESLA TDR. The assumed luminosity samples and, for TESLA, the beam polarization, are indicated. In the LHC studies and in the TESLA studies, only one form factor at a time is allowed to deviate from its SM value.

arXiv:hep-ph/1307.8265

SM up to Aplanck?

What if the Higgs properties would turn out to be just like those of the SM Higgs boson to the ILC precision and that no BSM signal found?

We would need to question then the range of validity of the SM.

How far can the SM go?

Stability of SM Vacuum

Conclusions

Whatever new physics is awaiting for us, clean environment, polarized beams, and excellent detectors to reconstruct W/Z/t/H in their hadronic decays will enable us to uncover the nature of the new physics through model-independent precision measurements and open up the way to high scale physics!

ILC Situation

- ILC TDR completed = Technology is ready
- A preferred candidate site in Japan chosen and site specific design started.
- ILC is now a project officially recognized by the Japanese government, a TF has been formed in MEXT (funding agency), and an official review process in MEXT is about to start.
- However, ILC is NOT a Japanese project, BUT an INTERNATIONAL project!
- The Japanese government has just started contacting potential partners in the world.
- International support at all levels, including the grass root level, is absolutely necessary to make ILC happen! We need to convince the government that the world

Backup

Design to Reality

Bird's Eye View of the ILC Accelerator

ILC Accelerator

Advantage of Superconducting RF

✤ Ultra-high (Q₀ =10¹⁰):

- small surface resistance → almost zero power (heat) in cavity walls
- use relatively low-power microwave source to 'charge up' cavity
- ✤ Long beam pulses (~1 ms)
 → intra-pulse feedback
- Larger aperture / smaller beam loss

→ better beam quality w/ larger aperture lower wake-fields

- Work necessary on engineering for:
 - Cryomodule (thermal insultation)
 - Cryogenics
 - Gradient to be further improved

<u>Luminosity:</u>

Vertical emittance (tiny beams)

- Luminosity proportional to RF efficiency ILC
 - for given total power (electricity bill !),
 - ✤ ~160MW @ 500GeV
- Capable of efficiently accelerating high beam currents
- Low impedance aids preservation of high beam quality (low emittance)
 - Ideal for Linear Collider

ILC Accelerator R&D at KEK

Achieved >90% yield for ILC spec cavities

ILC super conducting RF cavity R&D

ATF2: International effort hosted by KEK from teams from UK, France, US, Korea, China, Japan; beam spot size: *goal=37nm* (corresponding to 6nm of ILC), *44nm achieved!*

ILC final focus test beam line

S1-Global: international collaboration for cryo-module assembly, connection and high power test by Germany, US, UK, Italy, Japan, hosted by KEK

ILC beam acceleration test

Achieved stable operation with the same duration (1 ms) and current (6.6 mA) as ILC

High gradient acceleration with super-conducting RF cavities

Progress in SCRF Cavity Gradient

Production yield: 94 % at > 35+/-20%

Average gradient: 37.1 MV/m

reached (2012)

Cryomodule System Test

DESY: FLASH

- 1.25 GeV linac (TESLA-Like tech.)
- ILC-like bunch trains:
- 600 ms, 9 mA beam (2009);
 800 ms 4.5 mA (2012)
- ♦ RF-cryomodule string with beam → PXFEL1 operational at FLASH

 \leftarrow

Period test Cryomodule TEL1

KEK: STF/STF2

- S1-Global: completed (2010)
- Quantum Beam Accelerator (Inverse Llaser
 Compton): 6.7 mA, 1 ms
- CM1 test with beam (2014 ~2015)
- STF-COI: Facility to demonstrate CM assembly/test in near future

FNAL: ASTA

(Advanced Superconducting Test Accelerator)

- CM1 test complete
- CM2 operation (2013)
- CM2 with beam (soon)

Nano-beam generation / control

ATF2 Progress by 2013

Ultra-small beam

- Low emittance : KEK-ATF
 - 4 pm achieved
 - (ILC target value, in 2004).
- Small vertical beam size : KEK ATF2
 - Goal = 37 nm,
 - 160 nm (spring, 2012)
 - 65 nm (April, 2013) at low beam current

IPAC2014, K. Kubo

Progress in measured min. beam size at ATF2 Progress in 2014 (We are almost there!)

Reproducible in short time!

ILC Detector

ILC Experiments

View events as viewing Feynman diagrams

Reconstruct events in terms of (q, l, gb, hb)

Jet invariant mass \rightarrow W/Z/t/h ID \rightarrow p^µ \rightarrow angular analysis \rightarrow s^µ Missing momentum \rightarrow poutrings

Missing momentum \rightarrow neutrinos

b/c ID with 2ndary/3tiary vertices

Thin and high resolution vertexing

Particle Flow Analysis

High resolution tracking

high granularity calorimetry

Hermeticity

down to O(10mrad) or better both ECAL and HCAL inside the solenoid

Select Feynman diagrams with polarized beams

To these processes, only left-handed electrons and right-handed positrons contribute !

If you have a wrong combination, cross section is zero.

Beam polarization plays an essential role !

e_{R}^{+} $\overline{\nu}e$		ILC	CLIC	TLEP
wζ	Pol (e	-0.8	-0.8	0
W	Pol (e	+0.3	0	0
e _L v _e	(σ/σ	1.8x1.3=2.34	1.8x1.0=1.8	1

Beam polarization acts as luminosity doubler !

Detailed Baseline Design Document

- Large R with TPC tracker
- 32 countries, 151 institutions, ~700 members
- Most members from Asia and Europe
- B=3.5T, TPC + Si trackers
- ECal: R=1.8m

- High B with Si strip tracker ٠
- 18 countries, 77 institutions, ~240 members
- **Mostly American**
- **B=5T**, Si only tracker
- ECal: R=1.27m

Both detector concepts are optimized for **Particle** Flow Analysis

Particle Flow Analysis

How to measure jet energies precisely?

Charged Particles

Tracker's resolution is much better than that from calorimetry

Use tracking devices

Neutral Particles Use calorimetry

PFA

Remove charged particle signals in calorimeters

Needs 1-to-1 matching of tracks and calorimeter clusters

Needs ultra-high granularity calorimeter

Detector R&D : ILD Component R&D

Performance Goal as compared to LHC detectors

Vertex resolution	2-7 times bette
Momentum resolution	10 times better
Jet energy resolution	2 times better

The key is ultra high granularity!

Detector	ILC	ATLAS	Granularity
Vertex Det.	5×5µm	400×50µm	x 800
Tracker	1×6mm	13mm	x 2.2
EM Calorimeter	Silicon: 5×5mm Scintillator : 5×45mm	39×39mm	x 61 x 7

Vertex Detector R&D

6um pixel now working!

Large size prototype 13.4mm x 65mm

Proof of principle for sensor technology finished! Now R&D on ladder, support structure, and 2-phase CO2 cooling system.

TPC R&D

better

Spatial resolution Asian GEM module

wei,iwea, itaa

other PRESS

1-5.38 mm -1.8 mm

Both GEM and Micromegas modules have achieved the performance goal: point resolution < 100um (3.5T)

Calorimeter R&D

Test beam data well reproduced by MC simulation, one-particle energy resolution has reached performance goal!

Project Development

ILC in Linear Collider Collaboration

ILC

ILC Time Line: Progress and Prospect

ILC Site Candidate Location in Japan: Kitakami Area

Establish a site-specific Civil Engineering Design - map the (site independent) TDR baseline onto the preferred site - assuming "Kitakami" as a primary candidate

Global Status

Year	Global Status	Status in Japan
2012	- TDR "Draft" completed, and technically reviewed, and the cost estimate internally reviewed, in GDE	
2013	 TDR Cost internationally and externally reviewed, TDR published "GDE" to "LCC" European Strategy published 	 Candidate site by JHEP, unified, Further study for q few year, recommended by SCJ (Science Council J.)
2014	 US-P5 recommendation published Global supports well recognized 	 MEXT established ILC Task Force ILC preparatory office starts at KEK An official budget for the ILC investigation/preparation allocated, first time, in MEXT.

- ILC accelerator technologies have been sufficiently developed and matured for the project to move "from Design to Reality" in coming several years.
- Global cooperation needs to be further established,
- LCC is leading the project under supervision of ICFA and LCB
- Strong supports from EU and US, well recognized and acknowledged,

Higgs

	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q_L, L_L
Type I	+	_	_	_	_	+
Type II (SUSY)	+	—	—	+	+	+
Type X (Lepton-specific)	+	—	—	—	+	+
Type Y (Flipped)	+	—	—	+	—	+
Spin and CP Mixing Measurements that compliment those at LHC

Search for small CP-odd admixture to a few %

CP-odd ZHH coupling is loop-induced, may not be the best way, though.

SM Higgs BRs

arXiv: 1307.1347

Table 1.1. The Standard Model values of branching ratios of fermionic decays of the Higgs boson for each value of the Higgs boson mass m_h .

m_h (GeV)	$b\overline{b}$	$\tau^+\tau^-$	$\mu^+\mu^-$	$c\bar{c}$	$s\bar{s}$
125.0	57.7 %	6.32 %	0.0219 %	2.91 %	0.0246 %
125.3	57.2 %	6.27 %	0.0218 %	2.89 %	0.0244 %
125.6	56.7 %	6.22 %	0.0216 %	2.86 %	0.0242 %
125.9	56.3 %	6.17 %	0.0214 %	2.84 %	0.0240 %
126.2	55.8 %	6.12 %	0.0212 %	2.81 %	0.0238 %
126.5	55.3 %	6.07 %	0.0211 %	2.79 %	0.0236 %

Table 1.2. The Standard Model values of branching ratios of bosonic decays of the Higgs boson for each value of the Higgs boson mass m_h . The predicted value of the total decay width of the Higgs boson is also listed for each value of m_h .

m_h (GeV)	gg	$\gamma\gamma$	$Z\gamma$	W^+W^-	ZZ	Γ_H (MeV)
125.0	8.57 %	0.228 %	0.154 %	21.5 %	2.64 %	4.07
125.3	8.54 %	0.228 %	0.156 %	21.9 %	2.72 %	4.11
125.6	8.52 %	0.228 %	0.158 %	22.4 %	2.79 %	4.15
125.9	8.49 %	0.228 %	0.162 %	22.9 %	2.87 %	4.20
126.2	8.46 %	0.228 %	0.164 %	23.5 %	2.94 %	4.24
126.5	8.42 %	0.228 %	0.167 %	24.0 %	3.02 %	4.29

Systematic Errors

	Baseline	LumUp
luminosity	0.1%	0.05%
polarization	0.1%	0.05%
b-tag efficiency	0.3%	0.15%

arXiv: 1310.0763

Model-dependent Global Fit for Couplings 7-parameter fit

Model Assumptions

$$\kappa_c = \kappa_t$$
 and $\Gamma_{\text{tot}} = \sum_{i \in \text{SM decays}} \Gamma_i^{\text{SM}} \kappa_i^2$
 $\kappa_i := g_i/g_i(\text{SM})$

Results

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up
$\sqrt{s} \; (\text{GeV})$	14,000	14,000	250/500	250/500	250/500/1000	250/500/1000
$\int \mathcal{L} dt$ (fb ⁻¹)	300/expt	3000/expt	250 + 500	$1150 {+} 1600$	250 + 500 + 1000	$1150 {+} 1600 {+} 2500$
κ_{γ}	5-7%	2-5%	8.3%	4.4%	3.8%	2.3%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.2%
κ_Z	4-6%	2 - 4%	0.49%	0.24%	0.50%	0.3%
κ_{ℓ}	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	0.60%	0.51%	0.4%
$\kappa_u = \kappa_t$	14-15%	7-10%	2.5%	1.3%	1.3%	0.9%

Snowmass Higgs WG Report (Draft)

What observables limit the coupling precisions?

The 4 most important ones Y_1 : recoil mass Y_2 : WW-fusion $h \rightarrow bb$ Y_3 : higgsstrahlung $h \rightarrow bb$ Y_4 : WW-fusion $h \rightarrow WW^*$

 $\Delta g_{HZZ} \sim \frac{1}{2} \Delta Y_1$

$$Y_{1} = \sigma_{ZH} \propto g_{HZZ}^{2}$$

$$Y_{2} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to b\bar{b}) \propto \frac{g_{HWW}^{2}g_{Hbb}^{2}}{\Gamma_{H}}$$

$$Y_{3} = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) \propto \frac{g_{HZZ}^{2}g_{Hbb}^{2}}{\Gamma_{H}}$$

$$Y_{4} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to WW^{*}) \propto \frac{g_{HWW}^{4}}{\Gamma_{H}}$$

Both ZH and vvH productions matter!

 $\Delta \Gamma_H \sim 2\Delta Y_1 \oplus 2\Delta Y_2 \oplus 2\Delta Y_3 \oplus \Delta Y_4$

 $\Delta g_{Hbb} \sim \frac{1}{2} \Delta Y_1 \oplus \Delta Y_2 \oplus \frac{1}{2} \Delta Y_3 \oplus \frac{1}{2} \Delta Y_4$

 $\Delta g_{HWW} \sim \frac{1}{2} \Delta Y_1 \oplus \frac{1}{2} \Delta Y_2 \oplus \frac{1}{2} \Delta Y_3$

For more details, see J.Tian @ Tokusui Workshop 2013

Expected Precision and Deviation Combined Fit with LHC data

Figure 2: Comparison of the capabilities of LHC and ILC for model-independent measurements of Higgs boson couplings. The plot shows (from left to right in each set of error bars) 1 σ confidence intervals for LHC at 14 TeV with 300 fb⁻¹, for ILC at 250 GeV and 250 fb⁻¹ ('ILC1'), for the full ILC program up to 500 GeV with 500 fb⁻¹ ('ILC'), and for a program with 1000 fb⁻¹ for an upgraded ILC at 1 TeV ('ILCTeV'). More details of the presentation are given in the caption of Fig. []. The marked horizontal band represents a 5% deviation from the Standard Model prediction for the coupling.

Assumed Luminosities

 $LHC = LHC14TeV: 300 fb^{-1}$

HLC = ILC250: 250fb⁻¹

 $ILC = ILC500: 500 \text{fb}^{-1}$

ILCTeV = ILC1000: 1000fb⁻¹

Maximum deviation when nothing but the 125 GeV object would be found at LHC

	ΔhVV	$\Delta h \bar{t} t$	$\Delta h \overline{b} b$
Mixed-in Singlet	6%	6%	6%
Composite Higgs	8%	tens of %	tens of %
Minimal Supersymmetry	< 1%	3%	$10\%^a, 100\%^b$
LHC 14 TeV , 3 ab^{-1}	8%	10%	15%

R.S.Gupta, H.Rzehak, J.D.Wells

arXiv: 1206.3560v1

Mixing with singlet

$$\frac{g_{hVV}}{g_{h_{\rm SM}VV}} = \frac{g_{hff}}{g_{h_{\rm SM}ff}} = \cos\theta \simeq 1 - \frac{\delta^2}{2}$$
Composite Higgs

$$\begin{split} \frac{g_{hVV}}{g_{h_{\rm SM}VV}} &\simeq 1-3\%(1~{\rm TeV}/f)^2 \\ \frac{g_{hff}}{g_{h_{\rm SM}ff}} &\simeq \begin{cases} 1-3\%(1~{\rm TeV}/f)^2 & ({\rm MCHM4}) \\ 1-9\%(1~{\rm TeV}/f)^2 & ({\rm MCHM5}) \end{cases} \\ \frac{g_{hbb}}{g_{h_{\rm SM}bb}} &= \frac{g_{h\tau\tau}}{g_{h_{\rm SM}\tau\tau}} \simeq 1+1.7\% \left(\frac{1~{\rm TeV}}{m_A}\right)^2 \end{split}$$

Fingerprinting is possible or we will get lower bounds on the BSM scale!

Hunting Ground for Extra Higgs Bosons

Figure 1.20. Regions below the curves are allowed by the constraints from unitarity and vacuum stability on the $\tan \beta \cdot m_A$ plane for each fixed value of κ_V^2 for $M = m_A = m_H = m_{H^+}$ in the Type II and Type X 2HDMs. Expected excluded parameter spaces are also shown by blue (orange) shaded regions from the gluon fusion production and associate production of A and H with bottom quarks and tau leptons at the LHC with the collision energy to be 14 TeV with the integrated luminosity to be 300 fb⁻¹ (3000 fb⁻¹).

Snowmass ILC Higgs White Paper (arXiv: 1310.0763)

Finger Printing: Elementary v.s. Composite

Deviations in Higgs couplings is a signature of many BSM theories. The pattern of the deviations can be specific to certain models. The precision Higgs coupling measurements at the ILC at the 1% level enable us to fingerprint the different models.

Standard Model 15% SM Ζ W С τ **Deviation from** 10% 5% 0% -5% **Standard Model -10%**⊢ -15% MCHM5 (f = 1.5 TeV) 15% SM Ζ W **Deviation from** 10% **Composite Higgs** 5% (MCHM5) 0% -5% -10% -15%

Lumi 1920 fb-1, sqrt(s) = 250 GeV Lumi 2670 fb-1, sqrt(s) = 500 GeV

Coupling Precisions Running Scenarios

Self-coupling Measurement

Weighting Method to Enhance the Sensitivity to λ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x} = B(x) + \lambda I(x) + \lambda^2 S(x)$$
irreducible interference self-coupling

Observable: weighted cross-section

$$\sigma_w = \int \frac{\mathrm{d}\sigma}{\mathrm{d}x} w(x) \mathrm{d}x$$

Equation for the optimal w(x) (variational principle):

 $\sigma(x)w_0(x)\int (I(x) + 2S(x))w_0(x)dx = (I(x) + 2S(x))\int \sigma(x)w_0^2(x)dx$

General solution:

$$w_0(x) = c \cdot \frac{I(x) + 2S(x)}{\sigma(x)}$$

c: arbitrary normalization factor

Expected Coupling Precision as a Function of Ecm

Sensitivity Factor

$$\frac{\Delta\lambda}{\lambda} = \mathbf{F} \cdot \frac{\Delta\sigma}{\sigma}$$

F=0.5 if no BG diagrams there

BG diagrams dominate at high $E_{\mbox{\tiny cm}}$

 \Rightarrow F grows quickly with Ecm !

Coupling Precision

ZHH :

optimal Ecm ~ 500 GeV

though the cross section maximum is at around Ecm = 600 GeV

vvHH :

Precision slowly improves with Ecm

Expected Coupling Precision as a Function of Ecm

Top Yukawa coupling

Y. Sudo

HL-ILC ?

ILC Stages and Upgrades

The current ILC design is rather conservative!

TDR

			Baseline	500 GeV N	Aachine	1st Stage	L Upgrade	$E_{\rm CM}$ U	pgrade
								A	В
Center-of-mass energy	E_{CM}	GeV	250	350	500	250	500	1000	1000
Collision rate	$f_{\rm rep}$	Hz	5	5	5	5	5	4	4
Electron linac rate	f_{linac}	Hz	10	5	5	10	5	4	4
Number of bunches	$n_{\rm b}$		1312	1312	1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	$\Delta t_{\rm b}$	ns	554	554	554	554	366	366	366
Pulse current	$I_{\rm beam}$	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
Main linac average gradient	$G_{\mathbf{a}}$	MV m ⁻¹	14.7	21.4	31.5	31.5	31.5	38.2	39.2
Average total beam power	P_{beam}	MW	5.9	7.3	10.5	5.9	21.0	27.2	27.2
Estimated AC power	P_{AC}	MW	122	121	163	129	204	300	300
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124	0.190	0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.152	0.100	0.070	0.152	0.070	0.043	0.047
Electron polarization	P_{-}	%	80	80	80	80	80	80	80
Positron polarization	P_+	%	30	30	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_x$	μm	10	10	10	10	10	10	10
Vertical emittance	$\gamma \epsilon_y$	nm	35	35	35	35	35	30	30
IP horizontal beta function	β :	mm	13.0	16.0	11.0	13.0	11.0	22.6	11.0
IP vertical beta function	β_y^*	mm	0.41	0.34	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	σ_{-}^{*}	nm	729.0	683.5	474	729	474	481	335
IP RMS vertical beam size	σ_y^*	nm	7.7	5.9	5.9	7.7	5.9	2.8	2.7
Luminosity	L	$\times 10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.75	1.0	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1%	77.4%	58.3%	87.1%	58.3%	59.2%	44.5%
Average energy loss	δρς		0.97%	1.9%	4.5%	0.97%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	Nuaire	×10 ³	62.4	93.6	139.0	62.4	139.0	200.5	382.6
Total pair energy per bunch crossing	Enairs	TeV	46.5	115.0	344.1	46.5	344.1	1338.0	3441.0
	Pana								

HL-ILC

							1st Stag Higgs Fac	ge B tory	aseline ILC, aft Lumi Upgrade	er High R Oper	ep Rate ation
	Center-o	f-mass ener	gy	$E_{\rm CM}$	GeV		250		250	2	50
	Collision	rate		$f_{\rm rep}$	Hz		5		5	1	0
	Electron	linac rate		f_{linac}	Hz		10		10	1	0
	Number	of bunches		$n_{ m b}$			1312		2625	26	25
	Pulse cu	rrent		$I_{\rm beam}$	mA		5.8		8.75	8.	75
	Average	total beam	power	$P_{\rm beam}$	MW	1	5.9		10.5	2	1
	Estimate	d AC powe	r	$P_{\rm AC}$	MW	1	129		160	2	00
	Luminosi	ity		L	$ imes 10^{34}{ m cm}$	-2 ₅ -1	0.75		1.5	3	.0
Nickna	me	Ecm(1)	Lumi(1) +	Ecm(2)	Lumi(2	2) +	Ecm(3)) Lumi(3)	Runtime	Wall Plug E
		(GeV)	(fb^{-1})	Ĩ	(GeV)	(fb^{-1}))	(GeV)	(fb^{-1})	(yr)	(MW-yr)
ILC(25	0)	250	250							1.1	130
ILC(50	0)	250	250		500	500				2.0	270
ILC(10	00)	250	250		500	500		1000	1000	2.9	540
ILC(Lu	mÚp)	250	1150		500	1600		1000	2500	5.8	1220

High Luminosity ILC

Independent Higgs Measurements

250 GeV: 250 fb⁻¹ 500 GeV: 500 fb⁻¹ 1 TeV: 1000 fb⁻¹ 250 GeV: 1150 fb⁻¹
500 GeV: 1600 fb⁻¹
1 TeV: 2500 fb⁻¹

Hypothetical HL-ILC

 $(M_{\rm H} = 125 \, {\rm GeV})$

Ecm	250	GeV	500	GeV	1 TeV
luminosity · fb	2	50	50	00	1000
polarization (e-,e+)	(-0.8,	+0.3)	(-0.8,	+0.3)	(-0.8, +0.2)
process	ZH	vvH(fusion)	ZH	vvH(fusion)	vvH(fusion)
cross section	1.2%	-	1.7%	-	
	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br
H>bb	0.56%	4.9%	1%	0.37%	0.3%
H>cc	3.9%		7.2%	3.5%	2%
H>gg	3.3%		6%	2.3%	1.4%
H>WW*	3%		5.1%	1.3%	1%
Η>ττ	2%		3%	5%	2%
H>ZZ*	8.4%		14%	4.6%	2.6%
Η>γγ	16%		19%	13%	5.4%
Η>μμ	46.6%	-	_	_	20%

Coupling Measurements Hypothetical HL-ILC $(M_H = 125 \text{ GeV})$

250 GeV: 1150 fb⁻¹ 500 GeV: 1600 fb⁻¹ 1 TeV: 2500 fb⁻¹

P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV

P(e-,e+)=(-0.8,+0.2) @ 1 TeV

coupling	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV
HZZ	0.6%	0.5%	0.5%
HWW	2.3%	0.6%	0.6%
Hbb	2.5%	0.8%	0.7%
Hcc	3.2%	1.5%	1%
Hgg	3%	1.2%	0.93%
Ηττ	2.7%	1.2%	0.9%
Ηγγ	8.2%	4.5%	2.4%
Ημμ	42%	42%	10%
Г	5.4%	2.5%	2.3%
Htt	-	7.8%	1.9%

- 40/0()

) With H->WW (preliminary), if we include expected improvements in jet clustering, it would become 10%!

SUSY

Sensitivity to SUSY

Gluino search at LHC

Chargino/Neutralino search at ILC

 \rightarrow Comparison assuming gaugino mass relations

* Assumptions: MSUGRA/GMSB relation $M_1 : M_2 : M_3 = 1 : 2 : 6$; AMSB relation $M_1 : M_2 : M_3 = 3.3 : 1 : 10.5$

Тор

Top Quark

Threshold Region

Top at Threshold

Threshold Scan

Top Quark

Open Top Region

Key points

 $\Gamma_t\approx$ 1.4 GeV for $m_t=175~GeV$

The top decays before forming a top hadron.

Top spin is measurable by angular analysis of decay products.

+ Polarized beams are available at ILC

$$\bigvee_{\mathbf{q}_{\mathbf{V}}^{\mu}} \left[\mathbf{f}_{\mathrm{int}}^{t} = g_{W} \left[V_{\mu} \bar{t} \gamma^{\mu} \left(F_{1L}^{V} P_{L} + F_{1R}^{V} P_{R} \right) t - \frac{1}{v} (\partial_{\nu} V_{\mu}) \bar{t} \sigma^{\mu\nu} \left(F_{2L}^{V} P_{L} + F_{2R}^{V} P_{R} \right) t \right] + \mathrm{h.c.}$$

$$\bigvee_{q_{W}^{\mu}} \int_{t}^{b} \mathcal{L}_{int}^{tbW} = \frac{g_{W}}{\sqrt{2}} \left[W_{\mu}^{-} \bar{b} \gamma^{\mu} \left(F_{1L}^{W} P_{L} + F_{1R}^{W} P_{R} \right) t - \frac{1}{v} (\partial_{\nu} W_{\mu}^{-}) \bar{b} \sigma^{\mu\nu} \left(F_{2L}^{W} P_{L} + F_{2R}^{W} P_{R} \right) t \right] + h.c.$$

Indirect BSM Searches

Two-Fermion Processes

Z' Search / Study

Figure 23: Sensitivity of the ILC to various candidate Z' bosons, quoted at 95% conf., with $\sqrt{s} = 0.5$ (1.0) TeV and $\mathcal{L}_{int} = 500$ (1000) fb⁻¹. The sensitivity of the LHC-14 via Drell-Yan process $pp \rightarrow \ell^+\ell^- + X$ with 100 fb⁻¹ of data are shown for comparison. For details, see [14].

ILC's Model ID capability is expected to exceed that of LHC even if we cannot hit the Z' pole.

Beam polarization is essential to sort out various possibilities.

Two-Fermion Processes

Compositeness

S. Riemann, LC-TH-2001-007

Figure 26: Sensitivities (95% c.l.) of a 500 GeV ILC to contact interaction scales Λ for different helicities in $e^+e^- \rightarrow$ hadrons (left) and $e^+e^- \rightarrow \mu^+\mu^-$ (right), including beam polarization [18]. Beam polarization is essential to sort out various possibilities.